
The Organization and Sharing of Web-Service Objects with Menagerie

Roxana Geambasu, Cherie Cheung, Alexander Moshchuk, Steven D. Gribble, and Henry M. Levy
University of Washington, Seattle, WA

{roxana, cherie, anm, gribble, levy}@cs.washington.edu
March 19, 2007

Abstract

The radical shift from the PC desktop to Web-based ser-
vices is scattering personal data across a myriad of Web
sites, such as Google, Flickr, YouTube, MySpace, and Ama-
zon S3. This dispersal poses significant new challenges for
users, making it more difficult for them to: (1) organize,
search, and archive their data, much of which is now hosted
by Web sites; (2) create heterogeneous (multi-Web-service)
object collections and share them in a protected way; and
(3) manipulate Web objects with standard applications or
build new tools or scripts that operate on those objects.

This paper presents Menagerie, a software framework
that addresses these challenges. Menagerie creates an inte-
grated file and object system from heterogeneous, personal
Web-service objects dispersed across the Internet. Our
Menagerie architecture has two key parts. The Menagerie
Service Interface (MSI) defines a common Web-service API
for object naming, protection, and access. The Menagerie
File System (MFS) lets desktop applications and Web ser-
vices manipulate remote Web objects as if they were local
files. Our experience shows that Menagerie greatly simpli-
fies the construction of new applications that support col-
lections of heterogeneous Web objects and fine-grained pro-
tected sharing of those objects. We describe the Menagerie
architecture and implementation, present several novel ap-
plications we developed on Menagerie, and provide mea-
surements that show the practicality of our approach.

1 Introduction

Despite enormous advances in distributed and Web-
based computing, many users still rely on their desktop op-
erating systems for data storage and application processing.
Files remain the basic paradigm for storing programs and
data. Users organize files into folders; they search files, ex-
ecute them, manipulate them with applications or viewers,
compose them in documents, email them to friends, and so
on. The desktop OS provides mechanisms for naming, pro-
tecting, and sharing files, as well as high-level services such
as backup and restore.

This desktop-centric view is rapidly yielding to a new
generation of Web services that is profoundly affecting the

nature of data and applications. Web-based data storage and
sharing services now house terabytes of personal data. For
example, users share photos through Flickr [44] or Yahoo!
Photos [46]; they publish videos on YouTube [47]; they
keep diaries on Blogger [13]; and they store files on services
such as Amazon S3 [3]. Similarly, Web-based “software-
as-a-service” applications entice users away from the desk-
top to read email through Gmail or Hotmail; store and share
spreadsheets using ThinkFree [34] or Google Docs [14];
and edit videos and photos using Remix [1], Jumpcut [45],
and hosted Photoshop. In the near future, the PC desktop
will likely be inconsequential for many of our data and ap-
plication needs.

This brave new world brings many advantages, including
simplified software management for the user and the appli-
cation provider, ease of publishing, and ubiquitous access.
On the other hand, it poses significant new challenges. For
example:

1. Data organization and management. The shift to Web
services scatters users’ data across the Internet where
it is housed by a myriad of Web services. How will the
user organize and manage her remotely stored data?
Consider Ann, a professor of Biology preparing for
her Biology 101 class. Typically, she creates a new
directory for each class that contains grade spread-
sheets, student photos, lecture slides, class handouts,
and student emails. Ann now prefers Flickr for photos,
Google Docs for spreadsheets, ThinkFree for hand-
outs, Powerpoint for slides, and Hotmail for class com-
munications. How would Ann create a unified view of
these data and applications? Once the class is over,
how would she archive all her class data as a unit to
ensure its safety for future use?

2. Protected data sharing. Although publishing is sim-
plified in the Web service environment, protected shar-
ing becomes more difficult. For example, Ann wishes
to share her class directory, which includes confiden-
tial grade information, with Bob, a professor who will
be taking over her class for a week. Does Ann need
to share each object explicitly with Bob? Must Bob
create accounts on Yahoo, Google, Microsoft, Think-
Free, etc., to access Ann’s data? Even in a world of

1

single-sign-on accounts, how would Ann describe this
collection of distributed data to share it with Bob?

3. Data manipulation and processing. Web services re-
strict the operations on their objects; e.g., they export a
limited API (if any) and expose only a small set of user
commands through the browser. In contrast, the power
of a system such as Unix derives, in part, from its sim-
ple data-processing commands (cat, grep, etc.) that
can be composed together or extended to manipulate
data in new ways. In the Web services world, how does
the user create simple programs or scripts to process
data housed by the service? Must data be manually
downloaded, manipulated, and then uploaded? Or will
users cede to the service all data processing, surrender-
ing the ability to easily add new data-processing func-
tions? How do users search for personal data across
multiple Web services? Are users locked in by ser-
vices? For example, suppose Ann wants to switch
from Hotmail to Gmail – can she easily retain her con-
tacts, or better yet, all her messages and attachments,
or must she abandon her Hotmail data?

We designed and implemented Menagerie to address
these challenges. Menagerie is a system that integrates het-
erogeneous Web-service objects through uniform naming,
protection and access. Menagerie enables new applications
that easily organize, manage, manipulate, protect, and share
user personal Web objects. For example, Figure 1 shows
how Ann can use a Menagerie-based application on her PC
to create a folder that “contains” photos from her Flickr
account and Google spreadsheets and documents from her
Google account. She can then share this folder and its ob-
jects with Bob. Bob uses Menagerie on his PC to access
Ann’s objects or manipulate them with Unix programs with-
out needing to know their locations on Flickr and Google.

The key Menagerie components include: (1) the
Menagerie Service Interface (MSI), an API for inter-Web-
service communication, and (2) the Menagerie File System
(MFS), which uses the MSI to provide a simple file-object
view of a user’s Web objects. MFS allows users to ma-
nipulate Web objects using unmodified existing programs.
For example, using Menagerie, a Unix user can archive all
of her Flickr photos with a single-line Unix tar command.
Moreover, she can untar that archive into a different photo
system, such as Picasa, thereby moving seamlessly from
one service to another.

We implemented Menagerie on Linux and integrated it
with a number of Web services, including Gmail, Google
Docs, Flickr, YouTube, and Yahoo!Mail. We then used it to
construct a set of new applications, including the Menagerie
Desktop Service, which provides a unified Internet desk-
top to help users organize, manipulate, and share their per-
sonal Web objects, and the Menagerie Group Sharing Ser-
vice, which allows groups of users to share Web objects
with each other.

GDocs&SpreadsheetsFlickr photos

Bob's PC
cp tar

We are in receipt of

your order as

contained in the

Attached purchase

order form. We

confirm acceptance

on said order subject

only to the

following exceptions:

On exceptions noted,

Letter

1

Animals are a major

group of organisms,

classified as the

kingdom Animalia or

Metazoa. In general

they are

multicellular, capable

of locomotion at

some stage in their

life cycle, responsive

to their environment,

Notes

1

Ann's PC

Grades

PIC

1

PIC

3

Animals are a

major group of

organisms,

classified as the

kingdom

Animalia or

Metazoa. In

general they are

Notes

1

Grades

photo editor

PIC

1

PIC

3

Animals are a

major group of

organisms,

classified as the

kingdom Animalia

or Metazoa. In

general they are

Notes

1

GradesShare

PIC

1

PIC

2

PIC

3

PIC

4

Figure 1: Example Menagerie Scenario. Using an Object Orga-
nization Web application built on Menagerie, Ann created a new
folder that links to some of her objects from Flickr and Google
Docs. She can share this folder with Bob, who uses Menagerie
to access Ann’s folder on his PC and manipulate its objects with
Unix programs.

Our experience demonstrates that a set of straightfor-
ward protocols and components can help users combine the
ease of use, publishing, and ubiquitous access advantages
of Web services with the organizational and data process-
ing advantages of the desktop. We further show that the
performance of Menagerie is highly competitive with exist-
ing Web services and distributed file systems.

In the remainder of this paper, we first present
Menagerie’s high-level architecture. Section 3 then ex-
plains the implementation of Menagerie, focusing on the
Menagerie Service Interface and the Menagerie File Sys-
tem. Section 4 describes the applications we built on top
of Menagerie. We evaluate the performance of our system
in Section 5. Section 6 describes related work, and we
summarize and conclude in Section 7.

2 Architecture
Three basic goals drive the Menagerie architecture:

1. Object location transparency. Users should be able
to create collections of heterogeneous objects and ac-
cess them without needing to know which service is
responsible for each object.

2. Fine-grained protection and sharing of objects and
collections. Users should be able to share individual
objects or collections of objects that are hosted on one
or more Web services.

3. Generic data access and backward compatibility. Ex-
isting programs should be able to manipulate objects
hosted by Web services. Similarly, it should be easy
to write new programs or scripts that manipulate these
objects.

Meeting these goals in the current Web services environ-
ment can be daunting. In the current desktop environment,

2

Web

Ann's PC

MFS

MSI

MSI

M
S
I M
o
d
u
le

M
S
I M
o
d
u
le

C1Application

1

Application

2

File

system

calls

C2

MSI

Ann@service1

Ann@service2

Service 1

Web
Service 2

Figure 2: Menagerie Architecture. The right side shows two
Web services that support the Menagerie Service Interface (MSI).
The MSI Module implements MSI operations and exports an ob-
ject name hierarchy for each user’s objects. The left side of the
figure shows Ann’s PC, which is running the Menagerie File Sys-
tem. Through MSI operations, MFS can mount Ann’s object name
hierarchies on her PC using capabilities (C1 and C2) for her hierar-
chies. She can then run applications that access the remote objects
using Unix file system calls.

the OS creates a set of simplifying standards for programs
and data. In contrast, each service in the Web environment
has its own naming, protection, representation, operations
interface, and other conventions, which complicates inte-
gration and inter-operation. In the long term, our goal is to
create a common object architecture on top of existing ser-
vices. Yet our generic data access goal for programs leads
us to an approach that treats objects as files, since files are
the common data storage and processing vehicles for exist-
ing applications.

Our solution therefore uses both object and file
paradigms, which we extend with Web-related features to
support new Web-oriented applications. As a result, our
architecture bridges the gap between Web services and tra-
ditional operating systems. In the short term, Menagerie of-
fers a framework for experimenting with Web service inte-
gration. By building new applications on top of Menagerie,
we gain insight into the properties needed to better integrate
Web services and operating systems in the future.

2.1 Architectural Overview
Figure 2 shows the Menagerie architecture. Each of the

two Web services on the right supports the Menagerie Ser-
vice Interface (MSI), a communication protocol that pro-
vides object naming, protection, and access operations.
Through MSI, the services export an object name hierar-
chy for each of their users. The figure shows Ann’s object
hierarchies on Web Service 1 (consisting of three objects
arranged as a flat list) and Web Service 2 (organized in a
two-level structure).

On the left of the figure is Ann’s PC, which is running
the Menagerie File System (MFS). Using capabilities C1
and C2 that Ann supplied for her Web Service name hierar-
chies, MFS imported and mounted those hierarchies on her

PC. As a result, Ann’s Web objects can be named through
her local file system name space. This is indicated by the
trees in MFS that mirror Ann’s Web service trees. Once
her Web service name hierarchies are mounted, Ann can
run standard applications that operate transparently on her
remote Web objects.

Before describing MSI and MFS is more detail, we look
at how Menagerie handles naming and protection.

2.2 Object Naming

Object naming is key to any distributed architecture, and
Menagerie’s naming system must support several needs.
First, it must provide unique identifiers for objects across
heterogeneous Web services. Second, it must provide user-
readable names that are meaningful to users and correspond
to the way users name objects inside of a Web service.

Each object in Menagerie is identified with a service-
local ObjectID. The fact that ObjectIDs are unique within a
service (but not globally unique) suits the current object ad-
dressing model of most Web services, i.e., it gives services
the liberty to create and name new objects independently.
Menagerie can then create globally unique object names by
combining the service-local ObjectIDs with services’ DNS
names.

Users associate user-readable (text) names with their
Web objects, such as Google spreadsheets. As described
above, each Menagerie Web service exports an object name
hierarchy that contains the user-readable names for all ob-
jects for each of its users. The hierarchical structure im-
itates the logical structure that the service exposes to the
user. For example, Flick offers users a two-level struc-
ture consisting of sets (albums) and photos within each
set; therefore, Flickr could choose to export a two-level
name hierarchy. Google Docs has only a flat structure and
could export a one-level hierarchy that contains all of a
user’s document and spreadsheet names. Individual ob-
jects in a service are named relative to the exported hi-
erarchies, e.g., Ann@Flickr/Disneyland/Mickey-photo or
Ann@GDoc/class-grades.

2.3 Protection

As we have seen, Menagerie was designed to support
fine-grained sharing of objects and object collections. Such
sharing is difficult for Web services because each service
enforces its own authentication and control system. While
we desire a global, distributed protection system that sim-
plifies object sharing and provides data transparency, we
cannot require Web services to totally cede control of the
objects they manage.

For this reason, Menagerie supports a hybrid capability-
based protection system. A Menagerie capability is a token
that contains the globally unique name for an object and a
set of object-specific access rights. Possession of a capa-
bility gives the holder the right to access the object in the
specified ways. Capabilities support sharing because they

3

are easy to pass from user to user; Menagerie’s capabilities
are passed in the form of URLs that can be mailed, book-
marked, etc. They support protection because they are diffi-
cult or impossible to forge. However, a Menagerie capabil-
ity is subject to control by the Web services whose object it
names.

Each Menagerie service must mint its own capabilities
in a manner consistent with the Menagerie architecture and
MSI, which supports capability creation and protection op-
erations. A service can divide its object rights into two
types: open-access rights and closed-access rights. An
open-access right gives the user of the capability free ac-
cess to the specified operation; e.g., if the right allows the
holder to read the object, then the service will return the
object’s contents when presented with a capability with that
bit set. A closed-access right, however, requires additional
authentication; when a capability with a closed-access right
is presented, the user must authenticate himself before the
service will perform the requested operation. In most cases,
this will require an account for the service. However, note
that having an account is not sufficient – the user must still
possess a capability with an appropriate rights bit that they
received from the object’s owner.

This hybrid system lets services provide simple con-
trolled access to some (or all) object functions while re-
quiring more restricted access to others if they consider it
important to do so. Today’s Web services employ a wide
range of schemes in the spectrum of choices. For exam-
ple, Flickr provides a mechanism by which a user can au-
thenticate himself, request a “token” for one of his objects,
specify a set of rights enabled by that token, and pass it
to an application (or other user) as a way to grant access.
This is essentially a capability scheme. Myspace, on the
other hand, lets users share their private Web objects only
with their “friends,” who are registered users of Myspace.
Google Calendar offers users “secret URLs” to their cal-
endars that they can give to friends or embed in blogs or
Web pages. These URLs are a type of capability that can be
used to view, but not modify, the user’s calendar. To share
a calendar with update rights, the user must provide the re-
ceiver’s username to the service (effectively adding it to an
ACL). Menagerie’s protection system easily supports all of
these options.

Our protection scheme meets our fine-grained sharing
goal. Limited sharing is very simple: the user creates a
capability and passes it to someone, who does not need to
have an account to perform a limited set of actions on the
shared object. To access the object fully, however, the re-
ceiver has to decide whether it is worth the effort of creating
a new account if he does not already have one. Protected
group sharing is much easier as well. If the user wants to
share a resource with a group of people, he need not specify
all of the usernames in his group to the service. Instead, he
simply creates a capability and gives it to his friends (e.g.,
via email, via a blog, or via a group sharing site where the

group already exists).

2.4 The Menagerie File System

The Menagerie File System (MFS) is a Menagerie com-
ponent that lets users mount the name hierarchies exported
by Web services onto their machines. Mounting a name hi-
erarchy integrates that object name space into the local file
system name space, letting users name their Web objects as
if they were files. This gives users a unified view of local
objects and Web objects and makes it easier to create new
organizations based on those objects.

Once a user mounts a Web service name hierarchy, he
can then navigate through his objects on that Web service
using existing applications that manipulate files and direc-
tories. Users can thus archive their data, copy files to and
from a hierarchy, search through all their Internet data, etc.
Neither the application nor the user need know where the
data is stored or how it is fetched. Thus, MFS makes ex-
isting desktop applications useful in the Web object envi-
ronment. For example, in Figure 2, Ann can easily make a
copy of one of her Web objects using the Unix cp command
without knowing the source of that object.

By exporting a file system interface, MFS also facili-
tates the building of new applications that perform useful
functions on Web service objects. Using MFS as a building
block, we constructed a variety of Web and desktop appli-
cations for Internet data organization and sharing with min-
imal effort. We describe these applications in Section 4.

It is worth contrasting our approach with NFS [27]. Like
NFS, MFS lets users graft a remote name space onto a lo-
cal file name space. However, mounting an object name
space is not the same as mounting an NFS tree. First, NFS
lacks flexibility for protection and sharing; its unit of shar-
ing is essentially the NFS mount, so sharing an object re-
quires that the recipient mount the entire NFS tree in which
the object resides. Second, the NFS protocol is inflexible
and inappropriate for Web services that use URLs, HTML
tags, etc. That is, Menagerie objects are not really files,
and ensuring the proper behavior of an object in response
to some user actions (such as double-clicking on the ob-
ject) requires additional metadata structures that are not
supported by NFS. Finally, supporting the high-level MSI
interface is much easier than implementing an NFS server
on existing Web services that often maintain data in their
own custom storage infrastructures.

2.5 The Menagerie Service Interface

The Menagerie Service Interface (MSI) is an API
that Web services must implement in order to support
Menagerie. MSI’s functions are grouped into the four cat-
egories shown in Table 3 and described below: hierarchy
traversal functions, file system functions, Web-related func-
tions, and protection-related functions.

Hierarchy traversal functions. As we have seen, ev-
ery Web service exports a name hierarchy for each of its

4

Hierarchy traversal functions
getattr(capa, object ID) returns FS-like attributes
list(capa, object ID) returns list of object names and IDs

File system functions
read(capa, object ID) returns byte[]
write(capa, object ID, name, content)
mkdir(capa, parent ID, name)
delete(capa, object ID)
move(capa, object1 ID, object2 ID)

Web-related functions
embed tag(capa, object ID) returns string
get URL(capa, object ID) returns string
search(capa, parent ID, keywords) returns list names, IDs

Protection-related functions
create capa(capa, root node ID, rights)

returns capa, closed rights
revoke capa(object capa, revoke capa)

Figure 3: The MSI interface. This table shows the parameters
and return types of each function. MSI services must support the
hierarchy and protection-related functions, and may support the
others. Depending on the combination of functions that services
implement, some applications may be enabled and others disabled.

users. We consider each node in the hierarchy to be either
an intermediate node or a leaf object. Intermediate nodes
are named sets or directories, while leaf nodes are individ-
ual objects. For example, in our implementation, Flickr sets
(albums) are intermediate nodes and photos are leaf objects;
Gmail threads are intermediate nodes, while Gmail mes-
sages are leaf objects.

A Menagerie capability can name any subtree of a hier-
archy, including the entire hierarchy and leaf nodes. This
allows users to share both individual objects and object col-
lections. MSI functions therefore require at least two input
parameters to refer to an individual object: (1) a capability
that names a hierarchy (tree or subtree), and (2) the objectID
of an individual object (set or leaf) within that hierarchy.

Two MSI functions, list and getattr, support name
hierarchy functions. Given the ObjectID of an intermediate
node in a hierarchy, the list function returns the names
of all the objects below that node, as well as their unique
IDs. Getattr returns the file system-like attributes of an
object, given its unique ID. Attributes include the object
type (intermediate or leaf object), time of last modification,
etc. Applications can therefore traverse an object hierarchy
using these MSI functions.

MSI constrains neither the structure of an exported hier-
archy nor the granularity of its objects; these are determined
solely by the Web service. For example, Gmail could export
a four-level hierarchy: folders/labels, threads, messages,
and email contents and attachments. Alternatively, Gmail
could expose a deeper hierarchy by decomposing message
contents into separate objects, one for each of its attributes,

such as ‘to’, ‘from’, ‘subject’, etc., resulting in a possibly
more flexible, yet more complicated, hierarchy.

File system functions. MSI’s file-oriented operations
allow new and existing filesystem-based applications (such
as tar, file explorers, image editors, etc.) to manipulate
hosted objects. Services support these applications by im-
plementing a small set of file methods, such as read,
write, mkdir, delete, and move.

Menagerie does not attempt to implement low-level file
operations through this MSI interface. Those operations are
left to the services. Instead, we have chosen a very coarse-
grained access granularity in the style of early distributed
file systems such as CFS [29]. The read operation returns
the entire contents of a leaf object, i.e., it downloads the
object. The write creates a new object (or replaces an old
one) by uploading the entire object, while mkdir creates a
new intermediate node in the hierarchy. This granularity is
high level enough to be convenient both for applications to
use and for services to implement.

Web-related functions. These MSI operations exist to
preserve the Web-oriented nature of the objects managed by
Web services. The embed tag and get URL functions
serve two purposes. First, they support the building of new
general-purpose Web applications for Internet data manage-
ment. Like desktop file-organization tools, these applica-
tions must be general enough to handle any type of data.
Using the embed tag and get URL functions, applica-
tions can embed Internet objects into their Web pages in
an abstract manner, preserving the “Webby” aspect of each
object type. For example, embed tag returns an
tag for a Flickr photo and an <object> tag for a YouTube
video. Second, the two functions allow the source Web ser-
vice to control the appearance of its objects on other Web
services and to limit the amount of information provided to
unauthenticated users. For example, YouTube can water-
mark its videos to show the company’s logo (as it already
does); Gmail could release a short summary of an email for
unauthenticated users by returning the HTML code block
that displays that summary.

MSI supports an explicit Web-related search func-
tion. This is both a feature and a performance optimiza-
tion. Search has become the most common way for users to
find objects across large data sets. As a consequence, most
services already offer a search function; e.g., users search
through their emails on Gmail and through their videos on
YouTube. By including the search function in MSI, we
enable an integrated search through the user’s Internet data
without requiring it to be downloaded and indexed locally.

Protection-related functions. Since MSI supports a
capability protection model, its API provides functions for
creating and revoking capabilities to nodes in an exported
name hierarchy. The create capa function mints a new
capability to an object, given a valid capability for the
hierarchy in which the object exists. Revoking a capa-
bility requires two capabilities, the object capa to be

5

U
s
e
r s
p
a
c
e

K
e
rn
e
l s
p
a
c
e

VFS

FUSE

S
q
u
id

libfuse

MFS

MSI Service

Module

M
S
I

(X
M
L/R
P
C
)

/dev/fuse

HTTP

MSI

(XM
L/RP

C)

Application

ext3

Data

Manager

cache
Metadata

Web

Service 1

MSI Service

Module

Web Service 2

(non-MSI

compliant)

Protection

Manager

Web

Service 2

Proxy

Figure 4: Menagerie Implementation. MFS is implemented as
a userspace file system. File system calls from applications are
redirected through the FUSE kernel module into the MFS user
program. Native MSI services implement MSI functions directly
through XML-RPC, while proxies provide MSI protection and
naming functions on behalf of existing HTTP-based Web services,
such as YouTube.

revoked and a revoke capa for the same object with
the REVOCATION right enabled that permits the revoca-
tion. This prevents users from revoking arbitrary capabili-
ties they are given by others.

3 Implementation

We implemented a Menagerie prototype and used it to
integrate Web objects stored in five popular Web services:
Gmail, Yahoo! Mail, Flickr, YouTube, and Google Spread-
sheets. We also implemented two native MSI Web services
that we will describe in Section 4.

Figure 4 shows the structure of our Linux-based proto-
type. On the left side is a node (PC or Web Server) run-
ning an application that accesses Web objects through the
Menagerie File System. We implemented MFS as a user-
space module built on the FUSE (File System in Userspace
[32]) infrastructure. FUSE consists of a kernel-level com-
ponent and a user-level library (libfuse). MFS is linked with
the library, which in turn communicates with the kernel-
level FUSE component to implement application-generated
file operations. To boost performance we use two caches.
MFS has an internal metadata cache for rapid retrieval of
short-lived file system metadata and uses the Squid [7]
cache proxy to store objects returned from MSI read calls.

The right side of Figure 4 shows two Web services and
their MSI Service Modules. Service 1, a native MSI ser-
vice, supports MSI functions directly through an internal
MSI Service Module that speaks XML-RPC. Since we can-
not modify existing HTTP-based Web services (such as Ser-
vice 2) to add MSI support, we built external proxies for
each such service. For example, in Menagerie, all MSI
operations on YouTube objects are directed to a YouTube
MSI proxy in the network. The proxy contains two parts,
as shown in Figure 4. The protection manager imple-
ments Menagerie’s protection model, mapping its capabili-
ties onto the Web service’s protection mechanism. The data

Root Node

ID
Password Open-access

Rights

Closed-access

Rights

CapTable

Root Node

ID
Password

Cap_token

64 bits 128 bits

64 bits 128 bits 8 bits 8 bits

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

DNS Name
Closed-access

Rights

8 bits String

Figure 5: Protection structures. CapTable is a hashtable that
maintains all the capabilities given out by a service. Our capabili-
ties are protected by a 128-bit random password. The capability’s
root node ID and password are used to validate that capability in
CapTable on each access.

manager exports user hierarchies from the service’s object
structures and implements all other non-protection-related
MSI functions. The proxy communicates with other MSI
services using XML-RPC and communicates with its prox-
ied service via HTTP.

We now describe in detail the implementation of the pro-
tection mechanism, MSI service modules, and MFS.

3.1 Protection

Menagerie uses password capabilities [8, 33] for pro-
tection; they protect against forgery by associating with
each capability a “password” chosen from an astronomi-
cally large number space. A Menagerie capability points to
the root-node of a subtree in an exported user’s name hi-
erarchy, providing access to all objects in that subtree. A
capability contains four parts (Figure 5): the DNS name for
the service, a 64-bit root-node ID, a 128-bit random pass-
word, and the closed-access rights. Protection is probabilis-
tic; guessing a capability from scratch requires guessing a
192-bit number. The closed-access rights are included so
that an application holding a capability can tell which oper-
ations require authentication.

Figure 5 also shows the data structure (CapTable) used in
our protection managers. The CapTable is a hash table that
registers all capabilities ever issued by a specific service.
CapTable stores each capability’s root node ID, 128-bit
password, and open-access and closed-access rights. The
rights fields are 8-bit masks, containing one bit for each of
the eight possible rights. A rights bit can be set in at most
one of the two rights fields and ORing the two rights fields
yields the complete set of rights enabled by the capability.

Every MSI method called on an object passes two pa-
rameters: a capability token for the subtree in which the
object exists and the objectID of the object in that sub-
tree. If the protection manager does not find a correspond-
ing (root node ID, password) pair in its CapTable,
the capability is invalid. If the operation is permitted and re-
quires no further authentication, the protection manager for-
wards the request to the data manager for processing. If the

6

operation requires authentication, the protection manager
performs the authentication using the username and user
password transmitted with the call. To handle existing ser-
vices that do not support MSI, we configured each protec-
tion manager statically with a small user account database
to simulate a service-local manager with access to the ser-
vice’s account database.

For the user’s convenience, we encode and pass
capability tokens as URLs. When a user requests a
capability from a service, the service returns a URL
that embeds the capability. For example, a capabil-
ity token obtained from Gmail might be encoded as
http://gmail.com/MSI?cap rootID=...&cap
passwd=...&cap closed rght=..., where the
dots represent text-encoded values of the corresponding
fields. In this way, capability sharing is similar to URL
sharing in the Web. For example, for Ann to share with
Bob a folder exported from her desktop service, she would
request a capability for that folder from the Web service
and copy and paste the URL into an email to Bob. For
security, the capability should be sent over secure email.

Revocation in our scheme simply requires zeroing the
rights fields or removing the capability entry from the CapT-
able.1

3.2 Data Managers

The data manager for a Web service exports its MSI user
hierarchies and implements file system and Web-related
MSI functions. We chose XML-RPC as the MSI protocol
due to its simplicity and flexibility. This choice also sim-
plifies caching, since the protocol runs over HTTP, which is
understood by Squid.

For existing Web services, our proxies export an appro-
priate object hierarchy. For YouTube and Google Spread-
sheets, for example, we provide a one-level hierarchy con-
sisting of all the user’s videos or spreadsheets, respectively.
For Gmail we export a four-level hierarchy: folders/labels,
threads, messages, and email content and attachments. The
Yahoo mail hierarchy is similar but excludes the thread
level, which Yahoo lacks. For Flickr, the user hierarchy
consists of sets and photos. Finally, our Menagerie Desk-
top Web application, which allows users to create arbitrary
structures to organize their Internet objects, exports what-
ever depth is dictated by those structures (see Section 4).

We use open-source Python Web service libraries [18,
38] to implement data managers wherever possible, extend-
ing them to support the complete set of MSI functions. For
services that provide developer APIs (Flickr, YouTube, and
Google Spreadsheets), the data manager implementation is
straightforward; we simply issue the appropriate REST [10]
or SOAP [37] calls to fetch the needed data and construct
the MSI return value from the XML result. For exam-

1While the service could maintain the revoked capability’s
(ID,password) in its CapTable to prevent dangling references, this is
not strictly required given the 192 bits that uniquely identify a capability.

ple, to fetch the list of photos in a Flickr set, we issue a
‘flickr.photosets.getPhotos’ request to the Flickr REST API
service [43].

Some services do not provide developer APIs to operate
on their data (namely, Gmail and Yahoo!Mail). Building
proxies for these services was much more difficult and re-
quired us to emulate browser-service communication pro-
tocols. We used several techniques to reverse engineer ex-
isting protocols and implement our proxies: for example,
we extracted information from Web page source code; we
used Ethereal [9] to trace browser-server communication to
gather redirection targets; we scraped pages; and we identi-
fied situations where required information could be pieced
together only from multiple page reads. Overall, our ex-
perience suggests that while a system like Menagerie can
be built transparently without service support, even small
amounts of such support greatly simplify the task.

3.3 MFS Implementation

For programming and debugging convenience, we pro-
totyped the Menagerie File System in Python on top of
FUSE. Users mount their Web service name hierarchies us-
ing MFS, and for each mounted Web service, MFS mirrors
the user’s hierarchy for that service in a separate directory.
For example, if Ann mounts her Flickr and Gmail hierar-
chies, she will see two directories under her MFS mount-
point, one for each service. Each directory will appear
to contain her objects as exported by a service; in reality,
however, MFS only maintains capabilities to the mirrored
objects. When MFS performs an operation on an object,
however, it also caches any object metadata that operation
returns.

To mount a service hierarchy, the user or application
simply creates a new top-level directory (e.g., with mkdir)
in the MFS mountpoint (e.g., /mfs), specifying the name
of the new directory and the capability for the service hier-
archy to mount. MFS then creates a directory with the given
name to mirror the object tree addressed by the capability.
For example, suppose that Bob has a capability Capai for
one of Ann’s photo sets on Flickr. To mount Ann’s set
on his local machine, Bob issues the command: mkdir
"/mfs/AnnPhotos Capai"; this causes Ann’s Flickr
set to be mounted under the MFS directory named AnnPho-
tos.

All file system operations within the MFS mountpoint
are directed by the Linux Virtual File System (VFS) to
FUSE, which passes them to MFS. MFS then performs
the appropriate Menagerie function on the specified ob-
ject. Therefore, calls such as getattr, readdir, read,
write, and mkdir are translated by MFS into corre-
sponding MSI filesystem-related and hierarchy traversal
calls to the appropriate Web service. For example, to list
the contents of his AnnPhotos directory, Bob issues the
command ls /mfs/AnnPhotos. This causes MFS to
send an XML-RPC to the Flickr MSI service proxy, giv-

7

Figure 6: Screenshot of the Menagerie Desktop Service (MDS). The screenshot shows how Ann organizes her BIO101 class resources.
The right half of the page shows Ann’s photos on Flickr that she took during her expeditions. The left half shows Ann’s desktop folder
for the BIO101 lecture on Birds. Her BIO101/Lecture5 Birds folder contains two Flickr photos, a YouTube video, some emails related
to the lecture, and a subfolder. Ann is now dragging a photo of a rare bird onto her MDS desktop to add it to the new directory.

ing it the capability Capai and the objectID correspond-
ing to Ann’s photo set. The call returns the list of Ann’s
photo names in the set and the list of uniqueIDs of the
photos. Other file operations translate similarly to appro-
priate Web service actions. For example, the command
rm /mfs/Flickr/expedition/owl deletes the owl
photo in Ann’s expedition photo set. The command mkdir
/mfs/Gmail/BobMsgs creates a new BobMsgs la-
bel/folder in Ann’s Gmail account.

Since most MSI functions require objectIDs, MFS keeps
track of the mappings between local inode numbers and ob-
ject IDs. MFS obtains objectIDs either from getattr
calls or from ls calls and saves them in a hashtable in-
dexed by the local inode number. When an operation to
a file or directory occurs, MFS translates the path into an
inode number and looks up the objectID.

3.4 Caching
MFS uses two caches. A file system metadata cache

saves short-lived inode attributes, parts of which are in-
validated whenever an update is performed through MFS.
We use the Squid [7] proxy cache to store large, long-
lived objects from XML-RPC calls (particularly read and
embed tag). This cache has two effects: it reduces the
download time for Web objects and more important, it re-
duces the workload on the Web services by reducing the
number of object requests that are made to them.

We employ a standard Web-caching policy, i.e., by us-
ing the XML-RPC protocol, which is based on HTTP, we
can leverage HTTP’s cache timeout specification mech-
anism. We modified the XML-RPC library to supply

Cache-control headers based on the timeout values in-
cluded in the service modules’ RPC responses. These head-
ers are used by Squid to cache the data transparently to both
the service modules and MFS. Thus, the services control the
cache timeouts of their data.

4 Menagerie Applications

This section presents examples of the use of Menagerie
in Web and desktop environments. We first describe
two new native Web services that we built on top of the
Menagerie File System. We then show three simple exam-
ples of the use of existing desktop commands to perform in-
teresting and useful functions on Web objects. Our presen-
tation is brief, in part because these applications were sim-
ple and quick to build, reflecting the power of the Menagerie
approach.

4.1 Menagerie Desktop Service

The Menagerie Desktop Service (MDS) is a Web-based
application that lets users organize, manage, and share their
Web service objects. MDS users can mount hierarchies ex-
ported by multiple Web services, create new directories on
an MDS “virtual desktop,” populate those new directories
with objects from multiple Web services, and share the di-
rectory hierarchies with others.

MDS has a simple graphic user interface similar to those
used by Total Commander [11], or WinSCP [25]. Figure 6
presents a screenshot of the MDS interface, showing how
Ann uses MDS to organize her BIO101 class resources.
Initially, Ann registered with MDS, logged into the ser-

8

vice, and mounted her Web service hierarchies (e.g., Flickr,
Gmail, and YouTube) by pasting capabilities for those hier-
archies into a Web form. MDS retained the capabilities so
it could remount those hierarchies whenever she logs in.

The MDS Web page is divided in half. On the right is
a view of Ann’s Web service objects. When she logs into
MDS, this view contains a folder for each of her mounted
Web services. Clicking on a folder opens it to reveal the
objects inside. In Figure 6, Ann has previously clicked
on her Flickr folder and then opened her set of expedition
photos. The right pane thus shows photos from that Flickr
set. The left pane of the MDS interface presents a virtual
desktop used to construct new object organizations. Users
can create new multi-level directories and populate them
by simply dragging and dropping objects from the right to
the left pane. In the figure, Ann created a directory for her
lecture on birds; that directory currently includes several
bird photos from Flickr, a YouTube video on ducks, emails
from Gmail and Yahoo!mail, and a subdirectory that con-
tains grade spreadsheets. The figure shows that Ann is in
the process of dragging a Flickr bird photo onto her desk-
top.

Unlike Total Commander or WinSCP, MDS does not
fetch or move the contents of a Web object when a user
drags it to the desktop. The MDS desktop is only organi-
zational; objects remain in their respective Web services.
Instead, MDS populates the user’s organizational directo-
ries with symbolic links pointing to the objects in the user’s
mounted hierarchies. Although the Web objects are not
downloaded, MDS can still embed thumbnails of the ob-
jects in its desktop page. To retrieve the HTML code that
can display the thumbnail for a specific object, MDS reads
the object’s EMBED TAG extended attribute value supplied
by MSI, which causes MSI to issue an embed tag call to
the appropriate service. Thus, MDS treats objects generi-
cally and can handle objects of any type.

Our MDS implementation includes an MSI service mod-
ule, which allows users to export new organizational struc-
tures. In this way, a user can request a capability for
her MDS organization hierarchy and share her organization
with others by passing that capability. Because MDS is a
native MSI service, it requires no proxy.

MDS provides powerful and useful features but was ex-
tremely easy to build on top of our Menagerie prototype.
With the Menagerie infrastructure in place, one developer
implemented MDS in roughly 3 days. The MDS codebase
contains 275 lines of code; 131 lines of Php code implement
the application’s logic, while the remaining code is related
to HTML formatting.

4.2 Menagerie Group Sharing Service

The Menagerie Group Sharing Service (MGS) is a Web
application that lets users form groups and share collections
of Web objects or trees from object hierarchies on various
Web services. Think of MGS as a kind of MySpace for

Figure 7: Screenshot of the Menagerie Group Sharing Ser-
vice. The screenshot shows how Ann and Bob, both users of the
MGS service and members of the BIO101 group, share objects
with their group. Ann shared some of her Flickr bird photos, a
YouTube video, and an email, while Bob added a Flickr photo and
a Google spreadsheet of bird populations.

groups rather than individuals.
We implemented MGS by modifying Gallery 1 [20], a

popular open-source photo-sharing application. Our ver-
sion of Gallery runs on MFS, displays any type of re-
source (not just photos), and supports user groups. Fig-
ure 7 presents a screenshot of our Gallery-based service, in
which Ann and Bob have created a BIO101 group to share
class information with their students. Ann shared several
of her photos, a video, and an email on the BIO101 group
page; she does not want to share her entire MDS directory
with the class because it contains confidential emails and
spreadsheets. Bob added one of his Flickr photos and his
spreadsheet on bird population. All resources are displayed
in the group’s Web page on MGS. Adding resources to the
page is similar to adding resources in MDS; the user pastes
a capability into a form to give MGS access to an object or
hierarchy.

Modifying Gallery to build MGS took a single day for
one developer. We added only 73 lines of code, modified 3,
and removed 91. Of the 73 new lines of code, 32 lines were
related to HTML formatting.

4.3 Desktop Applications

Through its filesystem, which enables Web objects to be
accessed as abstract files, Menagerie supports new or ex-
isting applications that manipulate collections of data scat-
tered across Web services. We now show three simple ex-
amples of the use of existing desktop commands to perform
important functions on Web objects.

9

Backup and Restore. Today’s users have backup tools
for safely archiving their desktop data. However, for user
data stored by Web services, users must trust the service
to maintain their data, perhaps forever. In addition, while
many services offer persistence guarantees, very few offer
versioning and the ability to recover from accidental dele-
tion or modification of the user’s objects.

Using Menagerie, a backup or restore of Web objects can
be accomplished almost trivially with a simple set of exist-
ing applications or commands, such as tar and untar in
UNIX. For example, assume that Ann has MFS on her PC
and has mounted her Web service hierarchies, including her
Flickr objects. To backup her “Expedition” photo set on
Flickr, she would simply issue the following commands:

cd /mfs/Flickr
tar -cvzf /backup/Expedition.tgz Expedition

This creates a tar archive file in the /backup folder on
Ann’s PC of all of the photos in that Flickr set. Similarly, if
Ann accidentally deletes that set and later wishes to restore
it, she can do that easily as well:

cd /mfs/Flickr
tar -xvzf /backup/Expedition.tgz

Changing email providers. Many users maintain mul-
tiple email services and accounts for different purposes. For
example, a user might have one email account for work,
a personal account for communicating with friends, and a
third for sending messages to “untrusted” third parties (e.g.,
those who might return junk mail). With the rapidly chang-
ing technical, business, and social environment, users may
wish to migrate from one Internet or desktop mail system
to another, or to consolidate multiple accounts. While some
email services support interchange, this is not a general fea-
ture. Creating a new email account is much easier than mi-
grating old messages. Menagerie greatly simplifies the task
of email migration. For example, migrating from one mail
account (e.g., on Yahoo!mail) to another (e.g., on Gmail)
requires the following command:

cp /mfs/Yahoo/*/*/msg /mfs/Gmail

This command processes all of the folders and message
directories in the user’s Yahoo!Mail, copying each msg,
which contains the contents of an individual email, to the
Gmail account. The result is to send each message to the
user’s Gmail account where it will appear in his Inbox
folder. This solution is not perfect, though, for two rea-
sons. First, the copy forwards all emails but does not recre-
ate the same folder structure; a simple loop that first creates
the folders (labels) easily solves this problem. Second, our
implementation places attachments and message content in
separate files, which makes copying an email with attach-
ments more difficult; a 10-line script (omitted here) deals
with this by combining the attachment and message into a
single file before copying it to Gmail.

The key that enables this one-line email exchange is in
the MSI service proxies that we built for Web email services
(Yahoo and Gmail). Our proxies encode emails for transit
in XML that identifies the parts of the message. In other

words, the proxies implement a common schema for email
messages. Given this schema, it becomes trivial to use MFS
to download a message from one service and upload it cor-
rectly into another.

Synchronizing email contacts. Although some email
services let users import contacts from other services, they
do it in an ad-hoc manner in which each Web service knows
how to fetch contacts only from the most popular other ser-
vices.

With Menagerie, multi-email contact synchronization is
simple because the distribution is transparent. In particu-
lar, the application need only understand contact formats
and how to unify them. Since our proxies for Yahoo mail
and Gmail export the same contact formats, as noted above,
we can leverage existing file synchronization tools, such as
Unison [23]. For example, synchronizing the contacts be-
tween Gmail and Yahoo email accounts can be done as fol-
lows:

cp /mfs/Yahoo/contacts/* /tmp/Y
cp /mfs/Gmail/contacts/* /tmp/G
unison /tmp/Y /tmp/G
cp /tmp/Y/* /mfs/Yahoo/contacts
cp /tmp/G/* /mfs/Gmail/contacts

In this example, the user copies his contacts into a lo-
cal temporary file prior to running Unison because Unison
creates its own temporary files in the directories it synchro-
nizes. In Menagerie, executing Unison directly on the Web
service files would result in the creation and then removal
of new contacts on the Web service. To avoid this overhead,
we first download the contacts locally, run Unison on them,
and then upload the unified contact set. Note that we rely on
the user to resolve conflicts, since neither Gmail nor Yahoo
mail reports the time of the last contact modification.

4.4 Summary
In this section we described two new Web services built

on top of Menagerie and the use of Unix commands to ma-
nipulate Web objects through MFS. In the first case, we
showed how useful services can be constructed quickly and
easily on top of Menagerie. In the second case, we showed
the power of exporting Web objects through MFS. Our ex-
amples of using Unix commands to manipulate Web objects
are not meant to be complete, but instead to stimulate the
imagination of what might be possible (or even easy) given
a Menagerie-style integration of the Internet services with
the desktop.

5 Evaluation
This section evaluates the performance of the Menagerie

prototype. We have not optimized or tuned Menagerie’s
performance to date; rather, our goal was to build a straight-
forward and extensible framework for experimentation.
Nonetheless, our results demonstrate that performance of
our current prototype is competitive with other remote ac-
cess Web technologies and is fast enough to be usable in

10

Service Oper. Menagerie Total Menagerie
(ms) (ms) percent

Gmail ls 37 250 14.0%
read 128 1,549 8.2%

Ymail ls 35 955 3.6%
read 121 3,943 3.0%

Flickr ls 35 364 9.6%
read 74 1,624 4.5%

GDocs ls 41 348 11.7%
read 122 3,194 3.8%

Table 1: Menagerie latency compared to total latency for di-
rectory listing (ls) and remote data read (rd) on several ser-
vices. Menagerie is a small fraction of the total latency for existing
Web services.

practice. A kernel-level implementation in C could clearly
be faster than our user-level Python implementation, but we
do not believe that this difference would be noticeable to
clients in most cases.

For our measurements we ran MFS, Squid, and the ap-
plications on a Dell PC with an Intel P4 3.2 GHz CPU with
2GB of memory. We ran the MSI proxies for existing ser-
vices on a separate machine with a similar configuration.
Both machines ran Fedora Core 5 (kernel version 2.6.18),
Squid 2.6, OpenOffice 2.1, and Firefox 1.5. The two ma-
chines were connected via a 100Mbps switch, but for some
experiments we installed software traffic control on the Eth-
ernet devices to simulate slower (broadband) connections.

5.1 Menagerie Performance Breakdown
We first examine the latency for two simple operations

performed on Web services through Menagerie. Table 1
shows the latency for a directory listing and a remote
data read through MFS to Gmail, Yahoo Mail, Flickr, and
Google Docs. The data is read by a cat of a 47MB file. The
table shows that Menagerie represents only a small fraction
of the total latency (less than 15%) for these operations.
Not surprisingly, network latency and service time domi-
nate. For example, the Flickr directory listing takes 364 ms
to complete, of which 35 ms (9.6%) are spent in Menagerie
components (MFS, MSI, proxy).

To examine Menagerie’s performance in more detail, we
exclude the network and Web service times and account
for the time spent in the various Menagerie components.
For this measurement, we logged messages at key places
(e.g., just before MFS issues an XML-RPC request to a
proxy, when the corresponding RPC function is called in
the proxy, etc.) and computed the time spent in different
components by subtracting the timestamps of the appropri-
ate messages. To avoid problems due to clock desynchro-
nization between the proxy and MFS machines, we perform
centralized network logging onto a third machine. Factored
into the Menagerie latency is the time spent in six of its
components: (1) the FUSE kernel module (including all
kernel-space/user-space switchings), (2) MFS, (3) XML-
RPC, (4) Squid, (5) the protection manager (capability vali-

 0

 20

 40

 60

 80

 100

ls rd ls rd ls rd ls rd

P
er

ce
nt

Gmail Ymail Flickr GDocs

FUSE
MFS

XML-RPC
Squid

Protection
Proxy

Figure 8: Breakdown of latency by Menagerie component
for directory and read operations on four Web services. The
Python-based XML-RPC library dominates the Menagerie la-
tency, while FUSE and the proxies are the next largest factors.

Time (ms)
Cache hit Cache miss Cache miss

(LAN) (broadband)
ls 6 20 37
read 1,129 1,472 55,161
write N/A 2,460 54,032

Table 2: Performance of list, read, and write file system oper-
ations for the MStore simple storage service. Cached results re-
turn rapidly, while network transmission time dominates on cache
misses over broadband.

dation, credential translation, etc.), and (6) the proxy (which
includes parsing and building requests to Web services).

Figure 8 breaks down latency for each of these six com-
ponents. The dominating latency is attributable to the
Python-based XML-RPC, which represents at least about
one third of total latency in all cases, and about half on av-
erage. The time for FUSE and kernel/user switching repre-
sents as much as 20% of the total; this is due to our user-
level MFS prototype and would be reduced in a kernel-level
implementation of MFS. The use of proxies has a smaller
impact on total latency, on average about 15.2%. Finally,
execution in the MFS module is not a significant cost on its
own. Thus, the greatest potential for improvement lies in
the XML-RPC system. However, given the small cost of
Menagerie compared to network latency and Web service
time, it is not clear that such optimization is warranted.

5.2 Menagerie File System Performance
We now examine the performance of the Menagerie File

System by executing list, read, and write operations on a
5MB file. For these measurements we built a simple storage
service, called MStore, which exports a flat object hierar-
chy through MSI and can therefore be accessed using MFS.
In this way we can focus exclusively on MFS by eliminat-
ing the latency due to service-internal processing and HTTP
service communication.

Table 2 shows the execution times for the file system

11

 0

 10

 20

 30

 40

 50

 60

Read Save

T
im

e
(s

)

Local
MFS- cache hit

MFS- cache miss
Firefox

Figure 9: Performance comparison of four spreadsheet-
handling scenarios. A comparison of opening and saving a
spreadsheet in four cases: OpenOffice access to a local spread-
sheet; OpenOffice access to a Google spreadsheet (shown for both
a cache hit and cache miss); and Firefox browser access to a
Google spreadsheet. An MFS cache hit is comparable to the lo-
cal file case for reads; a cache miss is slower but still significantly
faster than Firefox. For writes MFS is slower than the local case
but still much faster than the browser.

operations under three conditions: (1) when the requested
object is found in the Squid cache, (2) when a cache miss
occurs and MStore is connected by a 100Mbps LAN, and
(3) when a cache miss occurs when MStore is connected
by a (simulated) low-end broadband link (two-way 1 Mbps
bandwidth, 20 ms delay). Cached and high-speed LAN op-
erations are relatively fast: 20 ms or less for list and be-
low 2.5 seconds for the 5MB-file read/write. Our down-
load/upload semantics for read/write influence the perfor-
mance of these operations; we require MFS to store a tem-
porary file for each downloaded/uploaded file to deal with
application block-level access. As a possible improvement
for reads, since Squid already stores the file as it comes in,
we could integrate the local Squid cache with MFS to per-
mit a cached file to be accessed directly by MFS.

When the proxy is accessed over a slow connection,
read/write times increase dramatically and are dominated
by network transmission time: sending a 5MB file over a
1Mbps link takes at least 41.9 seconds (in the ideal case),
and thus Menagerie accounts for at most 24% of the total
read time. As shown in the figure, caching improves per-
formance significantly, especially when the proxy and MFS
are separated by a slow network, which is usually the case
for home users: hitting in the cache results in 98% improve-
ment compared to the broadband time to read a 5MB file.

5.3 Application Performance

We next compare the performance of Menagerie with
other Web alternatives for executing a common application
function. For example, consider the task of opening, mod-
ifying, and saving a spreadsheet. Traditionally, users in-
voked desktop applications (such as Microsoft Excel [21]
or OpenOffice [31]) to perform this task. With the advent
of rich Ajax-based interfaces for online document editing
(such as Google Spreadsheets), users can now perform the
same task via their browsers. Menagerie presents a third al-

ternative: users could open a Google spreadsheet with a lo-
cal application (through MFS) and save their modifications
back to Google.

Our experiment compares these three scenarios using
OpenOffice, which we drive through an X-windows virtual
keyboard program [28] to eliminate user-introduced laten-
cies. Our experiment emulates the following operations:
the user opens a spreadsheet, modifies 2 cells, and saves
the file. We measure the time for reading and rendering a
spreadsheet and for saving the spreadsheet by monitoring
events from the OpenOffice window. In all cases, we han-
dle the same 200KB spreadsheet that contains 139 lines and
100 columns of numbers (no graphs or formulas). We ex-
clude application startup time.

Figure 9 shows the performance of four open/save sce-
narios: on a local spreadsheet with OpenOffice, on a Google
spreadsheet accessed by OpenOffice through MFS (we
show both a cache hit and cache miss on the object), and
on a Google spreadsheet using the Firefox browser. From
the figure, we see that the MFS-based solution achieves sig-
nificantly better performance than the Web-browser-based
one. Opening a spreadsheet with OpenOffice via MFS is at
least 4.5 times faster than performing the same task with
the browser, even for cache misses. For cache hits, the
MFS solution is relatively close to the local solution. Sav-
ing the spreadsheet with MFS is approximately 2.3 times
faster than saving it through the browser.

The slow speed of the browser solution is due mostly to
the Ajax application and its required rendering and server
communication in dealing with a 200KB spreadsheet. This
may be addressed in the future with better optimized Ajax
engines. At the moment, however, specialized applications
(such as OpenOffice) achieve much better performance for
the same task. Therefore, Menagerie not only supports new
functions on Web objects (as witnessed by applications in
Section 4), but also enables the use of existing applications
to handle Web objects in a performance-competitive way.

6 Related Work

Menagerie builds upon many earlier efforts in distributed
file systems and Web technologies. File systems for the
World Wide Web – such as WebFS [35], UFO [2], and
Alex [6] – provide read/write access to a global names-
pace comprising the entire Web. These tools can access
Web objects that are addressable via URLs but cannot han-
dle user-personal Web objects. That is, many of today’s
user objects are not directly addressable via URLs, because
services produce them dynamically in response to HTTP
POST requests. Menagerie provides the user with a global,
unified namespace for personal Web objects that exposes
internal Web service structures.

WebDav [39] provides a file system abstraction to ac-
cess remote Web objects. Its main focus is the support of
collaborative authoring of objects hosted by a Web service,
providing good concurrency control under the context of

12

that service. Menagerie provides a unified object names-
pace and fine-grained protection across services, which lets
users access and share collections of objects hosted by mul-
tiple services.

Networked and distributed file systems – such as
NFS [27], AFS [15], and Coda [19] – provide access to re-
mote files. They do not support the HTTP namespace, how-
ever, and their protocols are limited to file-related opera-
tions. The Plan 9 [24] file system views all digital resources
as files. We build upon this idea to make Web objects ac-
cessible through a simple file interface. SemanticFS [12]
proposed the idea of using a virtual directory interface for
search. We use this idea to support integrated search over a
user’s Web objects. Unlike all these systems, MFS supports
Web-related functions, such as service-local searching and
fetching of embed tags, and provides fine-grained sharing
via capabilities.

Capability protection has been used in many operating
systems and distributed systems [8, 30, 33, 41]. We borrow
the password-capability model [4] from previous systems
such as Amoeba [33] and Opal [8]. Our hybrid capability
mechanism is related to the authorized/unauthorized pointer
model first used in the IBM System/38 [5], which merges
capabilities with ACL-based authentication. Menagerie ca-
pabilities give services the choice of automatically authen-
ticated access via capabilities or controlled access that com-
bines capabilities and user authentication.

Single sign-on systems (such as Microsoft Passport [22])
have been proposed to allow users to login to many ser-
vices with a single account. While single sign-on simplifies
user account management, it does not address several of our
goals, such as fine-grained sharing and support for hetero-
geneous collections of Web-service objects.

Many communication technologies are currently in use.
CORBA [36] and DCom [26] provide communication stan-
dards but suffer from compatibility and firewall prob-
lems. Web communication protocols – such as SOAP [37],
REST [10], and XML-RPC [40] – address these problems
by using self-describing XML messages and HTTP. We
chose XML-RPC as the communication protocol between
proxies and MFS because of its simplicity. However, this
choice is independent of our architecture, and we could eas-
ily use another protocol instead.

Various file system interfaces to Web services let users
access their personal Web objects and run desktop applica-
tions on them [16, 17]. None of these supports the integra-
tion of resources from multiple Web services or the sharing
of heterogeneous Web objects.

Tools such as bookmarks and bookmarking Web ser-
vices [42] can be used to organize and share Web objects
that are directly addressable via URLs. However, these
techniques fall short for user-personal objects, which are
not always addressable via URLs (e.g., Gmail messages).

While Menagerie is closely related to these previous sys-
tems, it is unique in its integration of: (1) global naming and

fine-grained protection for user-personal Web service ob-
jects, (2) transparent access to those objects using standard
applications, and (3) extended functions supporting needed
Web operations (such as search). Finally, we believe that
Menagerie is the first system designed to address new prob-
lems created by the rapid expansion of Web storage and
software services.

7 Conclusions

The move from PC-centered to Web-based computing
and data storage poses new challenges for users and appli-
cations. This paper described Menagerie, a software frame-
work that supports uniform naming, protection, and access
for personal objects stored by Web services. The Menagerie
Service Interface lets clients import and manipulate per-
sonal object structures that reside in and across Web ser-
vices. Built on MSI, the Menagerie File System lets exist-
ing and new applications access those objects remotely and
transparently through a conventional set of file operations.
Menagerie speeds and simplifies the creation of new Web
services and applications that support novel organizations
and sharing of complex multi-Web-service objects.

We designed and implemented a Menagerie prototype
and integrated a set of existing Web services: Gmail,
Google Docs, Flickr, YouTube and Yahoo! Mail. We also
built two interesting Menagerie services: the Menagerie
Desktop Service and the Menagerie Group Sharing Service.
Our experience with Menagerie underscores the power of
this approach and its potential for enabling new Web ob-
ject organization and sharing tools. Finally, our measure-
ments show that a Menagerie-like system can provide per-
formance commensurate with existing Web-object access
techniques.

References

[1] Adobe. Web-based Video Remix. http://www.
adobe.com, 2007.

[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. UFO: A personal global file system based
on user-level extensions to the operating system. ACM
Transactions on Computer Systems, 16(3):207–233,
1998.

[3] Amazon.com, Inc. Amazon S3. http://aws.
amazon.com/s3, 2007.

[4] M. Anderson, R. Pose, and C. Wallace. A password
capability system. The Computer Journal, 29(1):1–8,
1986.

[5] V. Berstis. Security and protection in the IBM Sys-
tem/38. In Proc. of the 7th Symposium on Computer
Architecture, 1980.

[6] V. Cate. Alex – A Global File System. In Proc. of the
USENIX File System Workshop, 1992.

[7] A. Chadd, R. Collins, H. Nordstrom, G. Serassio,
S. Wilton, A. Rousskov, and D. Wessels. Squid

13

Web Proxy Cache. http://www.squid-cache.
org/, 2006.

[8] J. Chase, H. Levy, M. Feeley, and E. Lazowska. Shar-
ing and protection in a single-address-space operat-
ing system. ACM Transactions on Computer Systems,
12(4), 1994.

[9] Ethereal, Inc. Ethereal: Network Protocol Analyzer.
http://www.ethereal.com/, 2007.

[10] R. T. Fielding. Architectural styles and the design
of network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[11] C. Ghisler. Total Commander. http://www.
ghisler.com/, 2007.

[12] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
O’Toole. Semantic file systems. In Proc. of the 13th
ACM Symposium on Operating Systems Principles,
1991.

[13] Google, Inc. Blogger. http://blogger.com,
2007.

[14] Google, Inc. Google Docs and Spreadsheets. http:
//docs.google.com, 2007.

[15] J. Howard, M. L. Kazar, S. G. Meneea, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebothham, and M. J.
West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems,
6(1):51–81, 1988.

[16] M. R. Jain. FlickrFS. http://manishrjain.
googlepages.com/flickrfs, 2005.

[17] R. Jones. GmailFS. http://richard.jones.
name/google-hacks/gmail-filesystem/,
2004.

[18] B. Jorgensen. flickrapi. http://beej.us/
flickr/flickrapi/flickrapi.html, 2007.

[19] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the coda file system. In Proc. of the 13th
ACM Symposium on Operating Systems Principles,
1991.

[20] B. Mediratta. Gallery: Your photos on Your Website.
http://gallery.menalto.com/, 2007.

[21] Microsoft Corp. Excel home page. http:
//office.microsoft.com/en-us/excel/
default.aspx, 2007.

[22] Microsoft Corporation. Microsoft Passport. http:
//www.passport.com/, 2007.

[23] B. C. Pierce. Unison: File Synchronizer. http://
www.cis.upenn.edu/˜bcpierce/unison/,
2001.

[24] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254,
1995.

[25] M. Prikryl. WinSCP: Free SFTP and SCP Client for
Windows. http://winscp.net/eng/docs/
start, 2007.

[26] W. Rubin and M. Brain. Understanding DCOM. Pren-

tice Hall, 1999.
[27] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,

and B. Lyon. Design and implementation of the Sun
Network Filesystem. In Proc. of the Summer 1985
USENIX Conf., 1985.

[28] T. Sato. Virtual Keyboard for X Window
System. http://homepage3.nifty.com/
tsato/xvkbd/, 2004.

[29] M. D. Schroeder, D. K. Gifford, and R. M. Needham.
A caching file system for a programmer’s workstation.
In Proc. of the 10th ACM Symposium on Operating
Systems Principles, 1985.

[30] J. Shapiro, J. Smith, and D. Farber. EROS: a fast ca-
pability system. In Proc. of the 17th ACM Symposium
on Operating Systems Principles, 1999.

[31] Sun Microsystems. Openoffice.org. http://www.
openoffice.org/, 2007.

[32] M. Szeredi. Filesystem in Userspace. http://
fuse.sourceforge.net/, 2007.

[33] A. Tanenbaum, S. Mullender, and R. van Renesse. Us-
ing sparse capabilities in a distributed operating sys-
tem. In Proc. of the 6th ICDCS Conf., 1986.

[34] ThinkFree, Corp. ThinkFree. http://www.
thinkfree.com/common/main.tfo, 2006.

[35] A. Vahdat, T. Anderson, M. Dahlin, E. Belani,
D. Culler, P. Eastham, and C. Yoshikawa. WebOS:
Operating system services for wide area applications.
In Proc. of the 7th Symposium on High Performance
Distributed Computing, 1998.

[36] S. Vinoski. CORBA: integrating diverse applications
within distributed heterogeneous environments. IEEE
Communications Magazine, 14(2), 1997.

[37] W3C. SOAP. http://www.w3.org/TR/soap/,
2004.

[38] Waseem. Libgmail. http://sourceforge.
net/projects/libgmail/, 2004.

[39] E. J. Whitehead, Jr. and Y. Y. Goland. WebDAV: A
network protocol for remote collaborative authoring
on the web. In Proc. of the European Conf. on Com-
puter Supported Cooperative Work, Denmark, 1999.

[40] D. Winer. XML-RPC Specification. http://www.
xmlrpc.com/spec, 1999.

[41] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: The kernel of a
multiprocessor operating system. Communications of
the ACM, 17(6), 1974.

[42] Yahoo! Inc. Del.icio.us Social bookmarking. http:
//del.icio.us, 2007.

[43] Yahoo! Inc. Flickr API. http://www.flickr.
com/services/api/, 2007.

[44] Yahoo! Inc. Flickr Photo Sharing. http://
flickr.com, 2007.

[45] Yahoo! Inc. Jumpcut. http://www.jumpcut.
com/, 2007.

[46] Yahoo! Inc. Yahoo! Photos. http://photos.

14

yahoo.com, 2007.
[47] YouTube, Inc. YouTube: Broadcast Yourself. http:

//youtube.com, 2007.

15

