
Using Processes to Improve the Reliability of Browser-based

Applications

Charles Reis, Brian Bershad, Steven D. Gribble, and Henry M. Levy

{creis, bershad, gribble, levy}@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

University of Washington Technical Report UW-CSE-2007-12-01

Abstract

Web content now includes programs that are exe-
cuted directly within a web browser. Executable
content, though, creates new reliability problems for
users who rely on the browser to provide program
services typical of operating systems. In particu-
lar, we find that the runtime environments of cur-
rent browsers poorly isolate applications from one
another. As a result, one web application execut-
ing within the browser can interfere with others,
whether it be through an explicit failure or the exces-
sive consumption of resources. Our goal is to make
the browser a safe environment for running programs
by introducing an isolation mechanism that insulates
one application from the behavior of another. We
show how to use OS processes within the browser to
safely isolate programs in a way that is both efficient
and backwards compatible with existing web sites.

1 Introduction

The nature of content on the web is changing, re-
vealing weaknesses in the reliability of current web
browsers. We are seeing a shift in web content
from passive documents to active programs that run
directly in the browser, using languages such as
JavaScript. Unfortunately, web browsers offer poor
isolation between browser-based applications, allow-
ing them to interfere with each other in undesirable
ways. For example, a single browser-based program
can crash the browser, along with all open browser-
based programs. As another example, one CPU-
bound browser-based program can block interaction
with any other programs in the browser. Finally, a
memory leak in one browser-based program can bring
down the entire browser.

The goal of our work is to create an isolation mech-
anism that prevents these problems from occurring.

Our solution must satisfy three constraints. First,
it must be safe, allowing browser-based applications
to run side by side, without undesirable interactions.
Second, it must be efficient, imposing little runtime
or space overhead. Third, it must be backwards com-
patible, supporting the millions of web pages on the
Internet without requiring changes to content.

Reliability problems in software runtime environ-
ments are not new. For example, early PC operating
systems, such as MS-DOS or Mac OS, supported only
one address space. The result is that programs could
easily interfere with each other or crash the operat-
ing system. As these systems became more popular
and users began to run more programs simultane-
ously, isolation became a requirement to guarantee
reliability.

We propose to use the same mechanism that re-
solved reliability problems in earlier systems: the pro-
cess. By placing each browser-based application in a
separate OS process, we ensure that it is safely iso-
lated. Separate address spaces ensure that failures in
one process do not affect other processes, and that
each process can be cleanly terminated. Preemp-
tive scheduling allows multiple processes to run con-
currently. Using process-based isolation is efficient,
as processes have low startup and context switching
times relative to browser rendering times. A greater
challenge is maintaining backwards compatibility, as
we must ensure that we do not introduce bound-
aries between web pages that could previously com-
municate with each other via shared memory. We
design an approach that respects known inter-page
communication channels in the browser. Specifically,
by placing pages from different domains in different
processes, we can support effective isolation without
breaking existing pages.

We have implemented our safe, efficient, and back-
wards compatible browser by using a separate OS
process in Konqueror for each domain a user visits.

1

We show that our prototype functions properly on
content that causes other browsers to fail, yet con-
tinues to function transparently in almost all other
cases. In addition, overhead is low.

The Rest of this Paper

This paper is organized as follows. We present mea-
surements of web content in Section 2, showing a sub-
stantial rise in the use and complexity of JavaScript-
based applications. In Section 3, we demonstrate re-
liability problems in current web browsers, using a
combination of test pages and observed web sites. We
propose our solution to these problems in Section 4,
leveraging process boundaries between browser-based
applications at a granularity that does not break im-
portant communication channels. We describe our
prototype browser and evaluate its success in solving
these problems in Section 5, showing that we achieve
safety, efficiency, and backwards compatibility. Fi-
nally, we present related work in Section 6 and con-
clude.

2 Programs on the Web

This section demonstrates the extent to which pop-
ular web pages have become active programs rather
than simple documents. We focus on applications
that use JavaScript because they are widespread and
relevant for all web browsers. We show that: (1)
there has been a dramatic increase in the number
of active programs over the past few years, and (2)
these applications are larger and more complex than
before. These programs lead to higher contention for
resources in the browser, which increases the impor-
tance of providing a reliable runtime environment.

In October of 2006, we measured the amount of
JavaScript code on the front pages of the top 100
English language domains, as reported by Alexa [2].
While the Alexa data set may be biased by the user
population of the Alexa Toolbar, it offers a reasonable
sample of frequently visited sites. To study changes
in JavaScript usage over time, we used the Internet
Archive [5] to collect the list of the Alexa top 100 do-
mains from the previous three years. We then mea-
sured the content for those pages (when available)
through the Internet Archive.

We measured JavaScript usage by computing the
size of all JavaScript code delivered when visiting
each page. This includes the contents of <script>
tags, externally referenced scripts, event handler code
on other HTML tags (e.g.,), and
links with “javascript:” URLs.

0 100 200 300 400 500

Amount of JavaScript (KB)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 P

ag
es

2003
2004
2005
2006

Figure 1: CDF of JavaScript code size for the front
pages of the Alexa top 100 domains.

2.1 More Active Content

We first quantify the increasing amount of executable
content on the web. We show that over the past few
years, many more sites are including larger amounts
of JavaScript code.

Figure 1 shows a CDF of JavaScript usage for these
pages, over the past several years. The graph shows
a dramatic rise in JavaScript code per page, from an
average of 15.3 KB per page in 2003 to 64.9 KB per
page in 2006. There are now many more pages deliv-
ering large amounts of active code. The percentage of
pages with at least 10 KB of JavaScript code has risen
from 35% in 2003 to 71% in 2006, and 20% of cur-
rent pages now contain 100 KB of JavaScript code or
more. Additionally, the rate of increase of JavaScript
code is accelerating. For the 28 pages that appeared
in the top 100 list for all four years, the average yearly
increase was 1.7 KB in 2004, 17.9 KB in 2005, and
56.1 KB in 2006. This represents a substantial trend
toward executable code being delivered to clients’ web
browsers.

The above results are conservative. Because the
data set only includes the front page of each do-
main, it omits many popular sub-domains (e.g, http:
//maps.google.com), many of which may offer spe-
cialized applications. For validation, we compare
against Netcraft’s list of top 100 visited sites [8],
which does include sub-domains.1

Figure 2 shows the Alexa and Netcraft data sets
for 2006. The average amount of JavaScript code
per page increases from 64.9 KB to 84.9 KB, with
20% of pages containing over 130 KB of JavaScript.
The sites on the Alexa and Netcraft lists significantly

1We remove non-English pages and duplicates from the

Netcraft list, for an accurate comparison.

2

0 100 200 300 400 500

Amount of JavaScript (KB)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 P

ag
es

Alexa 2006
Netcraft 2006

Figure 2: CDF of JavaScript code size for Alexa’s
and Netcraft’s lists of top 100 domains.

overlap apart from sub-domains, suggesting that the
sub-domains are largely responsible for this increase.

2.2 Rich Active Content

In addition to an increase in the number of sites us-
ing active code, the available programs are becoming
larger and more complex. These programs make use
of JavaScript libraries and asynchronous communica-
tion, which results in larger programs that increase
the workload on the browser.

We find that JavaScript programs are becoming
more ambitious, with many attempts to offer the
functionality of desktop applications. These in-
clude email clients (e.g., Gmail, Zimbra, Zoho), cal-
endars (e.g., Kiko, JotSpot, Zoho), word proces-
sors (e.g., Writely, JotSpot, AjaxWrite), spreadsheets
(e.g., Google Spreadsheets, NumSum, AjaxXLS), and
many others.

Application such as these have given rise to
numerous JavaScript frameworks designed to ease
development. These include Dojo, Prototype,
script.aculo.us, the Yahoo UI Library, Microsoft At-
las, and the Google Web Toolkit, among others. All
include libraries of JavaScript code designed to run
in the client’s browser.

Additionally, these applications provide greater in-
teractivity through the use of asynchronous commu-
nication with a server. This allows programs to fetch
and display new data without requiring a full-page
refresh. To quantify this use of asynchronous commu-
nication, we look at how many sites from our Alexa
data sets use the XmlHttpRequest (XHR) class in
JavaScript. Other communication techniques exist as
well, so quantifying XHR use provides a lower bound.
For 2005, we found only one domain in Alexa’s top
100 that used the XHR class on its front page (i.e.,

M
SN

 M
ap

s

Y
ah

oo
 M

ap
s

M
ul

tim
ap

G
oo

gl
e

M
ap

s

W
in

do
w

s
L

iv
e

M
ap

qu
es

t

0

200

400

600

C
od

e
Si

ze
 (

K
B

)

Total with HTML
Javascript

Figure 3: JavaScript code sizes for 3 traditional map
sites (left) and 3 interactive map sites (right).

Friendster), and we found no uses in the top 100 do-
mains in 2003 or 2004. In contrast, 28 out of Alexa’s
top 100 domains used the XHR class in 2006, indicat-
ing a sharp increase in adoption over the past year.

To see the effect of these trends, we note that (1)
JavaScript programs are getting bigger and (2) these
programs increase the CPU workload for the browser.
We show this by comparing the code sizes and com-
putational requirements for a sample of traditional
and interactive JavaScript applications. We focus on
three traditional map services (MSN Maps, Classic
Yahoo Maps, and Multimap) and three interactive
map services (Google Maps, Windows Live Local,
and Mapquest), as of October, 2006. The interac-
tive map sites use asynchronous communication to
present maps that can be dragged or zoomed without
requiring a full-page refresh, unlike traditional map
sites. These interactive sites have only appeared re-
cently: both Google Maps and Windows Live Local
were introduced in 2005, and Mapquest transitioned
from a traditional site to an interactive site in late
2006.

Figure 3 shows the amount of code distributed with
each map site when it is opened to display the 98195
zip code. There is an average of 32.3 KB of code for
traditional sites and 296 KB for interactive sites, a
difference of nearly an order of magnitude.

Figure 4 shows the CPU time consumed by the
sites for both the initial page load and a set of sim-
ple operations, including zooming in twice and mov-
ing north once. The CPU time is a combination of
user time and system time, as reported by the Unix

3

M
SN

 M
ap

s

Y
ah

oo
 M

ap
s

M
ul

tim
ap

G
oo

gl
e

M
ap

s

W
in

do
w

s
L

iv
e

M
ap

qu
es

t

0

2

4

6
C

P
U

 T
im

e
(s

ec
on

ds
)

Startup only
Startup + Actions

Figure 4: Computation time for 3 traditional map
sites (left) and 3 interactive map sites (right). The
black bars represent the CPU time required to load
the site, and the gray bars represent the CPU time
to load the site, zoom in twice, and move north once.

time utility.2 The interactive sites use much more
CPU time than most of the traditional sites, for both
loading the page and performing simple operations.
The exception is Multimap, a traditional site with
high CPU utilization. While Multimap does not pro-
vide an interactive, draggable map, it does have a
large number of CPU-intensive advertisements, and
it loads 10 separate frames and 48 KB of JavaScript.

2.3 Summary

From a standpoint of reliability, these increases in
code size and complexity for browser-based programs
indicate that browsers need to effectively handle re-
source contention. Increases in program execution
time show the importance of running these programs
concurrently. Larger and more complex programs
present heavier memory contention, so support for in-
dependent memory management is crucial. Finally,
as users run more of these ambitious applications in
the browser, program crashes can be critical without
proper failure isolation.

2Numbers were collected in Firefox 1.5 on Linux on a 3.2

GHz Dell workstation.

3 The Trouble With Browsers

The increase in number, size, and complexity of
JavaScript applications underscores the need for a
reliable execution infrastructure. In this section we
show that modern browsers exhibit substantial reli-
ability problems in the presence of demanding ap-
plications. In particular, we show that failures oc-
cur using both real and manufactured web pages, for
three fundamental reasons: (1) poor failure isolation,
when a bug in one application infects another, (2)
scheduling starvation, where one overly aggressive ap-
plication can prevent others from running, and (3)
memory starvation, where the memory consumption
of one application can prevent others from making
good forward progress.

We demonstrate these reliability issues using sev-
eral popular browsers, including Internet Explorer 6
(IE), Firefox 1.5, Opera 9, Safari 2, and Konqueror
3.5. Our browser tests were conducted in Windows
XP SP2, Mac OS X 10.4, and Ubuntu Linux 6.0.6, for
each platform on which a given browser was available.
All tests were run on the same hardware, an Apple
Mac Mini with a 1.66 GHz Intel Core Duo proces-
sor, configured to run each of the above operating
systems.

3.1 Failure Isolation

Current web browsers do not prevent a crash in
one browser-based application from crashing other
browser-based applications. We find that such
crashes usually cause the loss of the entire browser,
including all open pages. Thus, as content on the
web becomes more active and complex, it becomes
more dangerous for users to load content from many
different sources at the same time.

Browser-based application crashes are often caused
by bugs in the browsers themselves, which are com-
mon. For example, a Bugzilla search for criti-
cal crash-related bugs in Firefox reported in 2005,
narrowed to those the developers fixed, returns 25
bugs [7]. The same search for 2005 crash-related bugs
in Konqueror returns 82 bugs [6]. As a specific exam-
ple, in October 2006, we found that simply visiting
http://www.microsoft.com crashed the Konqueror
browser.3 Such bugs illustrate the ease with which
browser failures can occur.

These bugs in browsers indicate the need for a
mechanism to prevent failures from leaking across ap-
plications.

3This corresponds to bug 90462 on http://bugs.kde.org,

which has since been resolved.

4

3.2 Concurrency

Concurrency is a fundamental service for ensuring
that applications remain responsive. It enables users
to run several applications side by side, without al-
lowing one application to starve another for CPU
time. This is important for browser-based programs,
as users frequently open many web sites at the same
time. However, due to a lack of preemptive schedul-
ing in many browsers, a long computation in one
application can prevent any other application from
making forward progress.

We have found many examples of CPU-intensive
pages on the web. For example, some sites offer
JavaScript and DHTML based animations, which can
be sufficiently CPU bound to interfere with other
open pages. One such page offers fireworks anima-
tions in JavaScript [24], which places enough demand
on the CPU to cause a video from YouTube in an-
other part of the browser to become choppy.

To quantify this, we measured page responsiveness
by observing how long a JavaScript event handler was
delayed on a test page while other pages were run-
ning. In tests of the JavaScript fireworks page above,
launching one fireworks animation at a time increased
Safari’s average response time from zero to 300 mil-
liseconds. Launching many of these animations can
drive response times to over ten seconds, even on a
dual core computer.

We can study concurrency problems in more detail
with test pages in the lab. We built a test page that
loads computationally intense scripts into three sep-
arate frames, each of which takes at least 500 ms to
complete. We detect whether the browsers use pre-
emptive scheduling by observing whether timestamps
that are collected during each frame’s computation
are interleaved.

Figure 5 shows the results by graphing the collected
timestamps from each frame. Surprisingly, in all
observed browsers except Opera, JavaScript code is
never interleaved across frames, indicating that most
browsers do not offer preemptive scheduling. The
same problem occurs across multiple open windows
in Firefox, Safari, and Konqueror. Internet Explorer
does interleave JavaScript execution across windows.
These results show that web sites using significant
JavaScript code may easily detract from the respon-
siveness of other web sites open in the browser.

Browsers attempt to deal with these concurrency
problems in a variety of ways, but the results have
mixed success. For example, all browsers offer a
script engine timeout that opens a dialog box if a
script attempts to use the CPU for longer than some
threshold. The user can then choose to abort or con-

0 5000 10000

Time (ms)

Firefox (Linux)

Firefox (Mac)

Firefox (Win)

IE

Konqueror

Opera (Linux)

Opera (Mac)

Opera (Win)

Safari

Figure 5: Concurrency behavior for popular web
browsers. Each set of solid lines represents the ex-
ecution of three frames loaded at the same time.

tinue the script. However, these thresholds are nec-
essarily fairly high, allowing scripts to run for several
seconds without interruption. Thus, sites can block
user interaction with other web sites for seconds at
a time. We have constructed denial of service pages
that either briefly yield the CPU every few seconds
or repeatedly launch computations in new frames.
These pages leave other sites effectively unresponsive
to user input.

As another example, browsers attempt to im-
prove page responsiveness using asynchronous net-
work communication via the XmlHttpRequest class.
However, this class also supports a synchronous mode
in which the calling site blocks until a response is
received from the server. In most browsers, a syn-
chronous call blocks not only the page, but all inter-
action with the browser and any other open pages as
well.

We verified this behavior using an adversarial page
that makes a synchronous request to a server. The
server then slept for one minute before returning a
response. During this time period, all Firefox and Sa-
fari windows were left unusable, including all browser
UI elements. In IE, the current window (including
UI) was locked until the reply was received, while
other windows remained responsive, and in Kon-
queror, all windows in an instance of the browser
locked, including all UI elements. Only Opera was
unaffected, where only the running code on the test
page blocked.

Combined, these CPU bound pages and disrup-
tive function calls prove that browsers need better
support for scheduling to prevent starvation of other
programs.

5

3.3 Memory Management

Memory management is a crucial service, as it allows
multiple applications to share a scarce and necessary
resource. Independently managing memory between
applications is important to allow the allocation deci-
sions of one application to remain isolated from oth-
ers, and to allow users to terminate applications that
grow too large.

However, we found that none of the web browsers
we tested offered independent memory management
for browser-based applications. Instead, one browser-
based program can continuously allocate memory,
leaving not just the offending program unresponsive,
but the rest of the browser as well. In this situation,
users cannot determine which browser-based program
is responsible for the problem, nor can they terminate
one browser-based program without losing others.

Memory leaks on real web sites have been com-
mon in practice. As noted by several web develop-
ers, JavaScript applications tend to be susceptible to
memory leaks [25, 21]. Because interactive applica-
tions may stay open in the browser longer than tradi-
tional pages, these memory leaks may grow to enor-
mous sizes. Tracking and correcting these leaks has
proven challenging, because many JavaScript objects
may not be garbage collected if they are registered
with the DOM. Indeed, the documentation for the
Google Maps API describes frequent memory leaks
caused in earlier versions of the API [4].

We can demonstrate the adverse effects of these
leaks using test pages in the lab. We use a string-
doubling script described by Powell and Schnei-
der [22], which quickly causes the browser to allocate
enormous amounts of memory. In all browsers we
tested, the page quickly allocated over 800 MB, often
leaving the browser unresponsive and the rest of the
system nearly unusable. Firefox refused to respond to
input on all platforms and needed to be killed. Safari
and Konqueror crashed. IE remained unresponsive
and Opera remained slow until the offending windows
were closed.

Because of common reports of memory leaks on the
web and the dangers of causing failures across multi-
ple applications, it is critical to introduce support for
independent memory management in browsers.

3.4 Summary

In this section we have shown that existing web
browsers are unreliable for executable content. As we
have shown using both real world and lab examples, a
failure (or even bad behavior) in one application can
propagate through to others in several ways. In the
next section, we describe a solution to the problem.

4 Reliability Through Isolation

In this section we show how processes executing in
separate address spaces can solve the reliability prob-
lems described in the previous section. We present
our architecture, which places content from differ-
ent domains in different processes. We then explain
how processes can safely isolate browser-based ap-
plications with low overhead, and we show how our
architecture does not disrupt existing web sites. Fi-
nally, we describe how we have modified the Kon-
queror web browser to use our proposed architecture.

Our overall goal is to prevent browser-based appli-
cations from interacting with each other in undesir-
able ways. This raises two design issues. First, we
must select an isolation mechanism to introduce into
the browser that is effective and lightweight. Sec-
ond, we must determine how to appropriately parti-
tion content using the mechanism.

We judge the success of our design by three criteria.
The solution must be safe, ensuring the browser pro-
vides robust failure isolation, concurrency, and mem-
ory management for applications. It must be efficient,
entailing reasonable time and space overhead in the
browser. Finally, it must be backwards compatible,
requiring no changes to existing web pages.

4.1 Architecture

At a high level, our solution is to modify existing web
browsers to execute each browser-based application
that a user visits in a separate OS process. This
provides an effective and lightweight sandbox for each
application.

However, it is difficult to precisely define a browser-
based application. A single application may consist of
multiple pages, frames, or HTTP connections. Con-
versely, a single page may contain multiple applica-
tions, loaded in different frames. We choose to define
browser-based applications based on the source of the
content. Specifically, we place all pages from a given
second level domain (e.g., yahoo.com or msn.com) in
the same process. Pages from different second level
domains are then isolated from each other in different
processes.

To accomplish this, we separate the browser’s ren-
dering engine from its user interface. For each domain
that a user visits, we create a new rendering pro-
cess, which draws HTML pages and runs JavaScript
code. The browser’s user interface (e.g., windows,
tabs, menus) continues to operate in a single process
that is separate from the rendering processes. This
architecture is shown in Figure 6.

6

A.com A.com B.com

Rendering

Engine

User

Interface

A.com A.com B.com

Rendering

Engine

User

Interface

Rendering

Engine

Current Browsers Proposed Architecture

Figure 6: Current and proposed browser architectures. Gray boxes indicate process boundaries.

Our architecture is transparent to the user. That
is, pages rendered in one process are visually mapped
into the correct UI element of the user interface pro-
cess. In this way, two different windows can show
pages rendered by the same process, while a single
window can show two frames rendered by different
processes.

Our policies for creating and destroying processes
are as follows. For each page a user requests, the
browser looks at the domain of the page. If it has not
already created a process for the domain, it launches
a new rendering process. The browser then instructs
the process to fetch and render the page, displaying
the results in the current window or frame of the user
interface.

As a user navigates links on a page or moves
back and forward through the browser’s history, the
browser updates this mapping of processes to UI ele-
ments. Specifically, if a user navigates to a page from
a different domain, the browser loads the requested
page in its corresponding process and then maps the
new page into the existing UI element. The previous
page is suspended but kept alive in the background
in case the user clicks the back button.

The browser must keep alive each rendering process
and the pages it has drawn for as long as they exist
in the browser’s history. When a window is closed,
the browser destroys all pages from the window’s his-
tory. If all pages from a given domain are destroyed,
the domain’s process then exits. Note that as an
optimization, the browser can set a threshold on the

number of pages from the history to keep alive. If the
user attempts to go back further than this threshold,
the browser can simply reload any earlier pages from
the web.

We can also augment browsers with existing pro-
cess management tools. Using tools from the oper-
ating system, the browser can display a list of all
domains, along with the current CPU utilization and
memory usage for all content, broken down by do-
main. Users can then adjust the scheduling prior-
ity of the domain’s process or define memory quotas,
if desired. Most importantly, users can cleanly ter-
minate the process of any misbehaving domain and
continue to use the rest of the browser.

4.2 Discussion

We next discuss how our proposed architecture meets
our three design criteria: safety, efficiency, and back-
wards compatibility.

In terms of safety, each process runs in a sepa-
rate address space. Thus, crashes and other failures
caused by one domain cannot adversely affect content
from other domains. The operating system uses pre-
emptive scheduling of processes, so expensive com-
putations and blocked function calls on pages from
one domain cannot starve pages from other domains.
Also, processes support clean termination, allowing
users to kill any process that becomes unresponsive
due to a memory leak.

7

Processes are also efficient at the granularity we are
using them. The time overhead for process startup
and context switching is low compared to page ren-
dering and JavaScript execution times. Similarly, the
memory overhead of loading an HTML rendering en-
gine in many processes can actually be quite low, due
to shared libraries.

In order to be backwards compatible, it must be
the case that applications that worked when run-
ning in a single address space browser continue to
work in our new browser. The primary challenge is
that pages may communicate with one another us-
ing shared memory. Therefore, we must ensure that
those pages are placed in the same rendering address
space.

To achieve this, we adopt a “same source” pol-
icy for assigning content to processes. This means
that all pages from a given second level domain are
rendered by the same process, while pages from dif-
ferent second level domains are rendered in differ-
ent processes. For example, http://www.yahoo.com
and http://mail.yahoo.com would be placed in the
same process, but http://mail.google.com would
be placed in a separate process.

This policy is intuitive, because the source of a web
page is visible to the user. It is thus easy to reason
about which pages will be isolated from each other.
Additionally, our policy has the attractive property
that a domain becomes responsible for the interac-
tion between its pages, but these pages are safe from
interference from pages from other domains.

Below, we show that the “same source” charac-
terization is sufficient in practice to ensure that all
pages that may communicate with each other via
shared memory are placed in the same address space.
Stronger policies would improve reliability at the ex-
pense of backwards compatibility, as they may place
pages that could previously communicate in separate
address spaces.

We now explain how our policy affects each of
the known inter-page communication channels in web
browsers.

• According to the “same-origin” security policy
used in all browsers, two pages can communi-
cate via shared memory (i.e., via the DOM) if
they come from the exact same origin (i.e., same
protocol, domain name, and port number) [23].
This channel is limited to “parent” and “child”
pages, where a parent page opens a child page
in a new window or an embedded frame. Cur-
rent browser-based applications actively use this
channel. We found 16 of 100 pages in our 2006

Alexa data set that had frames that could use
this channel.

Our policy uses a single address space for all
pages from the same second level domain, which
is a superset of pages from the same origin.
Thus, we do not disrupt this communication
channel.

• Parent and child pages can also communicate
via shared memory if one page’s origin is a suf-
fix of the other’s origin (e.g., my.yahoo.com and
yahoo.com). This is only allowed if the page
with the more specific origin grants permission,
by modifying its document.domain variable to
match the suffix. We found evidence of at least
9 pages in our 2006 Alexa data set using this
channel.

Because our policy applies to all content from a
second level domain, pages can continue to com-
municate with other pages from a suffix of their
own origin.

• Mozilla-based browsers support signed scripts,
which allow a script to ask the user for cer-
tain permissions. Among these permissions is
the ability to communicate with parent or child
pages from any origin, via shared memory. How-
ever, we found no uses of this channel or of signed
scripts in general in any of our data sets.

Our policy does disrupt any signed scripts that
attempt to communicate between pages from dif-
ferent origins. However, as this feature is not
portable across browsers and does not appear to
be used in practice, we argue that this disruption
is an acceptable tradeoff for vastly improved re-
liability.

• The Opera browser supports a proposed HTML
feature in which parent and child pages from any
two origins can communicate via a message pass-
ing API [16]. We found no uses of this channel
in any of our data sets.

While our policy may place two pages using this
mechanism in separate address spaces, it is still
possible to support this communication channel.
This is because message passing is a restricted
form of communication which is natural to sup-
port with inter-process communication.

• Any pages from the same origin can communi-
cate via cookie values. This channel depends on
the filesystem rather than shared memory, so it
is unaffected by process boundaries or our policy.

8

• Unintentional side channels have been shown to
exist between pages, using the browser cache and
visited link history to encode information [19].
Such channels are also unaffected by process
boundaries or our policy.

For these reasons, our “same source” policy main-
tains backwards compatibility in practice, as we know
of no sites which it disrupts.

4.3 Implementation

We have implemented our system by modifying the
Konqueror web browser for KDE, running on Fedora
Core 5 Linux. The Konqueror browser is reason-
ably well designed, so we were able to implement our
“same source” policy in less than one thousand lines
of code.

Our choice of Konqueror was primarily out of con-
venience, but we are currently investigating how to
modify other popular browsers as well. For exam-
ple, we have proposed this architecture to develop-
ers of Firefox 3 [3]. One challenge for Firefox is
that the browser’s profile data, including bookmarks,
caches, cookies, and preferences, are designed to be
single threaded. Allowing multiple processes to con-
currently access the profile could cause data corrup-
tion [1]. We are hopeful that the interface to the
profile data can be made thread-safe, so that Firefox
can benefit from this architecture as well.

5 Evaluation

In this section we evaluate our design in terms of its
benefits and costs, including safety, backwards com-
patibility, and efficiency. Using our prototype imple-
mentation, we show that our new browser (1) does
not crash on pages that crashed the original browser,
(2) does not disrupt the top 100 pages from the Alexa
data set (beyond a few minor bugs in our implemen-
tation), and (3) imposes minimal latency and space
overhead.

5.1 Safety

We first evaluate whether our implementation is suc-
cessful at defending against the reliability problems
we have identified. To do this, we loaded the pages
described in Section 3 in our prototype browser. Our
results are summarized in Table 1.

The table shows how both current browsers and
our prototype browser behave on the pages we tested.
Checkmarks indicate when these pages did not inter-
fere with pages from other domains. We acknowledge

that we have introduced the distinction between do-
mains as a reliability metric, perhaps creating an un-
fair comparison. However, we also argue that this
distinction is both justified and desirable, from our
discussions in Section 4. That is, it provides maxi-
mal reliability while maintaining backwards compat-
ibility.

For failure isolation, we tested the Konqueror
bug mentioned in Section 3. Visiting http://www.

microsoft.com in the original Konqueror browser
caused the entire browser to crash. Visiting it in
our prototype only crashed the process rendering the
page, which simply left a blank tab in the browser.

For concurrency, we measured the response time for
event handlers when either our CPU adversary page
or the JavaScript Fireworks demonstration page were
loaded in tabs in the browser. In Konqueror, the av-
erage response times in the presence of these pages
were 840 ms and 170 ms, respectively. In our pro-
totype, the response times were 4.1 ms and 3.6 ms,
respectively. This indicates substantially higher re-
sponsiveness in the face of heavy computation. Qual-
itatively, we found that we could easily interact with
web pages in other tabs even in the face of sites with
heavy computation, unlike in Konqueror.

We also tested our synchronous network request
adversary page. This page fully locked the UI for
Konqueror, but it only locked the contents of the of-
fending page in our prototype. The prototype’s user
interface and all other pages remained responsive.

For memory management, we tested our memory
leak test page. As the page allocated all of the sys-
tem’s memory, it caused the rest of the system to
become slow. However, while the original Konqueror
locked and eventually crashed, our prototype browser
remained responsive. Terminating the process of the
offending page was sufficient reclaim all memory it
had allocated.

5.2 Backwards Compatibility

To empirically test the backwards compatibility of
our prototype, we loaded the top 100 pages from the
2006 Alexa data set. We compared them visually
with the same pages in an unmodified instance of
Konqueror to confirm that page rendering was not
disrupted.

The original Konqueror browser was unable to ren-
der every page properly, as some pages have browser-
specific features. For this reason, there were 12
pages which caused JavaScript errors in both the
original and prototype browsers. Also, http://www.
microsoft.com was among the sites we visited, caus-
ing the browser to crash. Our prototype browser con-

9

IE Firefox Safari Opera Konqueror Prototype
Microsoft.com ✓ ✓ ✓ ✓ ✗ ✓

CPU Adversary Test ✗ ✗ ✗ ✓ ✗ ✓

JavaScript Fireworks ✗ ✗ ✗ ✓ ✗ ✓

Synchronous XHR Test ✗ ✗ ✗ ✓ ✗ ✓

Memory Leak Test ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Demonstrated interference across domains. Crosses indicate pages that interfered with content
from other domains in the browser. Checkmarks indicate when the behavior of these pages was isolated from
other content.

fined these crashes and errors to a single tab of the
browser.

Due to a bug in our implementation, our current
prototype was unable to handle pages that commu-
nicated across frames. This bug does not represent
an architectural problem, and we expect to resolve
it shortly. As a result of the bug, we encountered
6 pages that caused JavaScript errors in our proto-
type which worked in the original browser. Also, we
found that some embedded frames were drawn with
unnecessary scroll bars or outside the browser win-
dow. These issues can also be resolved with slight
improvements to our implementation, and do not rep-
resent architectural flaws.

5.3 Efficiency

We measured the time and memory overhead of our
prototype relative to unmodified Konqueror. First,
we measured the time to start the browser and load
a small test page. We found a 41% increase in startup
time, from 1.51 seconds to 2.12 seconds. We then fol-
lowed a link to a small page from a different domain,
which instantiated a new process in our prototype
browser. Here, page load time increased from 124
milliseconds to 890 milliseconds. We believe we can
remove the majority of this time with simple caching
of pre-forked processes, but we have not yet imple-
mented this feature in our prototype. However, in
the context of common page load times, the addi-
tional 0.9 seconds is relatively small.

Second, we measured the memory overhead intro-
duced for each new rendering process in our proto-
type. We compared our prototype’s behavior to run-
ning a single instance of Konqueror for all pages and
to running a separate instance of Konqueror for each
page. We used the Linux pmap tool to observe write-
able/private memory for all processes used by a given
browser.

Table 2 displays the results; values shown for load-
ing an additional page are the averages across four
page loads. Our prototype uses 24% more memory

for a single blank page than the original Konqueror,
as the user interface runs in a separate process than
the page. For each additional blank page opened,
however, the prototype is 46% more efficient than
starting a new Konqueror process from scratch.

For all alternatives, we note that the overhead is
sufficiently low to believe users can open a large num-
ber of sites without difficulty on modern computers.
This suggests a low cost for adding substantial relia-
bility.

6 Related Work

There has been some effort to support web browsing
with multiple processes in current browsers, but ex-
isting approaches do not use processes at an appropri-
ate level of granularity. We discuss these approaches
along with other related work, including process-
based isolation in other systems, robust runtime envi-
ronments for browser-based applications, and designs
for more robust and secure web browsers.

6.1 Processes in Current Browsers

Some current web browsers allow users to instantiate
multiple browser processes, but they do so at an in-
appropriate granularity. Internet Explorer and Kon-
queror both allow groups of windows to belong to
different processes. Specifically, each time the user
starts the browser from its icon on the desktop, a
new browser process is started. Opening a new win-
dow or tab from within the browser loads another
page in the same process.

By manually starting several browser processes,
users can mitigate the effects of failures in other
pages. A browser crash only affects the pages in
the same process, and the operating system handles
concurrency between pages from different processes.
Memory leaks can also be contained, as users can
cleanly terminate a process containing a page with a
leak.

10

Page Konq. (Same Process) Prototype Konq. (Diff Processes)
Single blank page 5.6 7.0 5.6

Additional blank page 0.29 3.0 5.6
Additional Google Maps 4.3 9.6 11.5

Table 2: Private memory allocated per page, in megabytes

However, current browsers are partitioned into pro-
cesses according to user interface elements and not
content. Thus, they do not isolate browser-based
applications, but rather groups of unrelated applica-
tions. Pages from different applications may often ex-
ist in the same process, forcing them to share a com-
mon fate. Additionally, there is no visual indication
of which pages belong to which process, leaving users
unable to make informed decisions about the impact
any failure will have. This is particularly problem-
atic for deciding which browser process to terminate,
if one page misbehaves.

On a similar note, Firefox can launch one process
per user profile. This may allow users to start multi-
ple isolated instances of the browser, but it comes at a
great cost for functionality: each profile maintains its
own bookmarks, preferences, and cache data, which
cannot be shared across profiles. Thus, it is awkward
to use multiple processes within Firefox. All other
browsers we have tested are limited to a single pro-
cess model.

6.2 Process-Based Isolation

Many researchers have investigated how to use pro-
cesses to improve the isolation in other runtime en-
vironments. For example, KaffeOS incorporated
process-based isolation into the Java Virtual Ma-
chine, while allowing direct sharing of objects [10].
A number of other efforts have added a processes or
other protection domains to the JVM as well [26, 15].

Researchers have also proposed using Java isolates,
which are Java application components that do not
share state [20]. Isolates offer many of the benefits
of process-based isolation, allowing multiple indepen-
dent applications to run reliably in the same JVM.
This mechanism has been used, for example, to sup-
port a resource management API for Java applica-
tions [13].

Additionally, some have asserted that the lack of
processes in the original JVM led to a number of
challenges in the design and implementation of the
system (J. Waldo, personal communication, Novem-
ber 7, 2006).

These efforts are complimentary to our work, show-
ing the need for effective isolation in runtime environ-
ments in general.

6.3 Browser Runtime Environments

In the context of web browsers, there has been no-
table work in providing robust client environments
for running applications. Over a decade ago, Sun
introduced Java applets [14], which provided all the
benefits of a Java Virtual Machine to code running in
the web browser: concurrent threads, type safety, rel-
atively high performance, and security mechanisms.
More recently, Microsoft has moved to support .NET
applications inside web browsers, using the Windows
Presentation Foundation (WPF) [11].

However, while applets provided a more ro-
bust runtime environment for application code than
JavaScript, they have not become ubiquitous. In fact,
in sharp contrast to the recent increases in JavaScript
usage, not a single page in the top 100 lists contains
a Java applet, from 2003 to 2006. We discovered four
Java applets in the Alexa top 500 global domains:
two were “hidden” applets for tracking web client be-
havior, and two were chat applications. This scarcity
of applets indicates a strong preference among web
developers for using JavaScript rather than applets
to build active web content.

Our work differs from efforts to introduce new run-
time environments into the browser, as we focus in-
stead on making the browser’s own runtime environ-
ment more reliable. This is important, given the large
number of JavaScript-based applications on the web.

In other work to improve the JavaScript run-
time environment, Adobe has recently donated its
ActionScript virtual machine and just-in-time com-
piler to Mozilla [9]. (Both JavaScript and Action-
Script are implementations of the ECMAScript stan-
dard [17].) Dubbed Tamarin, this virtual machine
could allow higher performance for future versions of
the JavaScript language. However, without the isola-
tion provided by separate address spaces, it is unlikely
that this will prevent many of the reliability problems
we have discussed.

11

6.4 Robust and Secure Browsers

Finally, researchers have attempted to improve
browser robustness and security through other
changes to browser architectures. Cox et al designed
Tahoma [12], which isolates each web application in
its own virtual machine, protecting both other web
applications and the operating system from its behav-
ior. We choose to isolate applications in the browser
using OS processes instead, offering a lower cost al-
ternative for reliability. Our approach does require
greater trust in the browser’s own security, though.
Similarly, Ioannidis and Bellovin propose a secure
web browser using SubOS processes [18], although
they offer little insight into the appropriate granular-
ity or interaction between processes. In contrast, we
argue for a choice of process boundaries which offers
high reliability without breaking existing sites.

7 Conclusion

Through measurements of both web content and
browser behavior, we have shown that current web
browsers provide an unreliable environment for run-
ning an increasingly popular class of applications.
Browser-based applications are rapidly spreading, yet
browsers do not isolate them from each other. This
leads to critical problems with respect to failure iso-
lation, concurrency, and memory management.

We have shown that browser-based applications
can be safely isolated from each other using OS pro-
cesses. Processes prevent unwanted interactions be-
tween programs in the browser, and they are efficient
relative to other browser operations, both in time and
memory overhead. By using a “same source” policy
for assigning pages to processes, we can also preserve
backwards compatibility with existing web sites.

Our prototype browser has demonstrated these
properties. It continues to run after loading pages
that cause other browsers to fail, and our current im-
plementation does not disrupt most pages we have
tested. As a result, we encourage developers of other
web browsers to adopt our proposed architecture to
provide reliable environments for active web content.

References

[1] Bug 135137 - profile data cannot be shared by
muliple running instances. https://bugzilla.

mozilla.org/show_bug.cgi?id=135137, Apr.
2002.

[2] Alexa web search - top 500. http://www.alexa.
com/site/ds/top_500, 2006.

[3] Firefox/feature brainstorming. http:

//wiki.mozilla.org/Firefox/Feature_

Brainstorming, Oct. 2006.

[4] Google maps api documentation. http://

www.google.com/apis/maps/documentation/,
2006.

[5] Internet archive: Wayback machine. http://

web.archive.org, 2006.

[6] Kde bug tracking system. http://bugs.kde.

org/query.cgi, 2006.

[7] mozilla.org bugzilla. https://bugzilla.

mozilla.org/query.cgi, 2006.

[8] Netcraft - most visited web sites. http:

//toolbar.netcraft.com/stats/topsites,
2006.

[9] Tamarin project. http://www.mozilla.org/

projects/tamarin/, Nov. 2006.

[10] G. Back, W. C. Hsieh, and J. Lepreau. Processes
in kaffeos: Isolation, resource management, and
sharing in java. In OSDI, Oct. 2000.

[11] K. Corby. Windows presentation founda-
tion on the web: Web browser applica-
tions. http://msdn.microsoft.com/library/

en-us/dnlong/html/wpfandwbas.asp, Oct.
2005.

[12] R. S. Cox, J. G. Hansen, S. D. Gribble, and
H. M. Levy. A safety-oriented platform for web
applications. In IEEE Symposium on Security
and Privacy, 2006.

[13] G. Czajkowski, S. Hahn, G. Skinner, P. Soper,
and C. Bryce. A resource management inter-
face for the java platform. Technical Report TR-
2003-124, Sun Microsystems, May 2003.

[14] J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification. Addison-Wesley, 1996.

[15] C. Hawblitzel, C.-C. Chang, G. Czajkowski,
D. Hu, and T. von Eicken. Implementing mul-
tiple protection domains in Java. In USENIX
Annual Technical Conference, June 1998.

[16] I. Hickson. Web applications 1.0: Cross-
document messaging. http://whatwg.

org/specs/web-apps/current-work/

#crossDocumentMessages, 2006.

12

[17] E. International. Standard ecma-
202: Ecmascript language specification.
http://www.ecma-international.org/

publications/standards/Ecma-262.htm,
Dec. 1999.

[18] S. Ioannidis and S. M. Bellovin. Building a
secure web browser. In Proceedings of the
FREENIX Track of the 2001 USENIX Annual
Technical Conference, June 2001.

[19] C. Jackson, A. Bortz, D. Boneh, and J. C.
Mitchell. Protecting browser state from web pri-
vacy attacks. In Proceedings of the 15th Interna-
tional Conference on World Wide Web (WWW
2006), May 2006.

[20] Java Community Process. Jsr 121: Applica-
tion isolation api. http://jcp.org/en/jsr/

detail?id=121, June 2006.

[21] P.-P. Koch. Quirksblog - memory leaks.
http://www.quirksmode.org/blog/

archives/coding_techniques/memory_

leaks/index.html, Sept. 2006.

[22] T. Powell and F. Schneider. JavaScript: The
Complete Reference. McGraw-Hill/Osborne,
2004.

[23] J. Ruderman. The same origin pol-
icy. http://www.mozilla.org/projects/

security/components/same-origin.html,
2001.

[24] S. Schiller. Fireworks.js: A dhtml fire-
works effect. http://www.schillmania.com/

projects/fireworks/, 2006.

[25] R. Stratulat. Biggest ajax problem.
http://www.stratulat.com/blogs/index.

php?title=biggest_ajax_problem&more=

1&c=1&tb=1&pb=1, July 2006.

[26] P. Tullmann and J. Lepreau. Nested java pro-
cesses: Os structure for mobile code. In Pro-
ceedings of the Eighth ACM SIGOPS European
Workshop, Sept. 1998.

13

