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Abstract
Nondeterminism complicates the development and management of
distributed systems, and arises from two main sources: the local
behavior of each individual node as well as the behavior of the
network connecting them. Taming nondeterminism effectively re-
quires dealing with both sources.

This paper proposes DDOS, a system that leverages prior
work on deterministic multithreading to offer: 1) space-efficient
record/replay of distributed systems; and 2) fully deterministic dis-
tributed behavior. Leveraging deterministic behavior at each node
makes outgoing messages strictly a function of explicit inputs.
This allows us to record the system by logging just message’s
arrival time, not the contents. Going further, we propose and im-
plement an algorithm that makes all communication between nodes
deterministic by scheduling communication onto a global logical
timeline.

We implement both algorithms in a system called DDOS
and evaluate our system with parallel scientific applications, an
HTTP/memcached system and a distributed microbenchmark with
a high volume of peer-to-peer communication. Our results show
up to two orders of magnitude reduction in log size of record/re-
play, and that distributed systems can be made deterministic with
an order of magnitude of overhead.

Categories and Subject Descriptors C.2.4 [Computer Commu-
nication Networks]: Network Protocols and Distributed Systems;
D.4.1 [Operating Systems]: Process Management; D.4.5 [Operat-
ing Systems]: Reliability

Keywords Distributed Systems, Reliability, Determinism, Record-
and-Replay

1. Introduction
Nondeterminism makes the development of distributed systems dif-
ficult. Without the ability to precisely reproduce a buggy execution,
it is challenging for developers of distributed applications to track
down the root cause of a bug. Further, replicating distributed sys-
tems for fault tolerance is hard since nondeterminism can cause the
replicas’ executions to diverge. Ideally, the behavior of distributed
systems would be solely a function of well-defined inputs.

However, nondeterminism is pervasive in distributed systems.
Not only does each individual node encounter nondeterminism lo-
cally due to timing variations in the operating system and hardware,
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but the network connecting the nodes is also a major contributor:
arbitrary messages can be lost or reordered. Without mechanisms
to control both sources, it is exceptionally challenging to replicate
distributed systems and to reproduce buggy distributed executions.

There are two main approaches to handling nondeterminism.
The first is to record and later replay the nondeterminism, sim-
plifying debugging by making executions repeatable. The second
approach eliminates nondeterminism altogether by executing the
program deterministically with respect to its explicitly specified in-
puts. This approach simplifies both debugging and fault-tolerant
replication.

This paper describes DDOS, a system we built to explore the
trade-offs between record/replay and determinism in distributed
systems. In record/replay mode, DDOS generates space-efficient
replay logs that can be used to replay an entire distributed system.
In deterministic execution mode, the entire distributed system is
executed deterministically with respect to inputs from outside the
distributed system, such as external network packets and user input.
To our knowledge, this is the first proposal for fully deterministic
execution of arbitrary distributed systems.

Both implementations exploit local-node determinism as pro-
vided by prior work in dOS [4]. For record/replay, we observe
that given local-node determinism, it is sufficient to record just the
arrival time of internal node-to-node messages, and not the mes-
sage’s contents; local determinism guarantees that message con-
tents will be regenerated deterministically during replay. For dis-
tributed determinism, we propose an algorithm for delivering in-
ternal node-to-node messages deterministically. When combined
with local-node determinism, this algorithm guarantees determin-
istic distributed execution.

DDOS advances prior work in two ways. First, existing record/re-
play systems [10, 14, 18] often produce prohibitively large logs
(multiple gigabytes per hour) because they work at the boundary
of each local-node and thus need to record the contents and deliv-
ery times of internal network messages. DDOS generates space-
efficient logs by exploiting local-node determinism to eliminate
the need to log the contents of internal messages. DDOS leverages
observations similar to those made by DejaVu [18], but because
DejaVu is a full record/replay system, it is not able to achieve the
considerable log size reductions that DDOS achieves by exploiting
local-node determinism.

Second, existing deterministic execution systems have focused
on multithreaded programs. These systems either support single-
node determinism only [4, 5, 8] or support distributed systems with
a limited communication model [1]. As part of DDOS, we pro-
pose and implement an algorithm to make inter-node communica-
tion fully deterministic and for arbitrary applications and commu-
nication patterns.

Our DDOS implementation supports arbitrary distributed POSIX-
compatible applications—including applications with data races—
without requiring changes to application binaries. Our evaluation
shows that our record/replay mechanism can reduce the required



log sizes by up to 70%, and that our deterministic execution mode
imposes up to an order of magnitude overhead relative to nonde-
terministic execution—these overheads vary wildly with frequency
and pattern of communication.

Finally, our evaluation demonstrates the following trade-off be-
tween record/replay and deterministic execution: the record/replay
mechanisms in DDOS impose a lower performance overhead at the
expense of larger logs, whereas the deterministic execution mech-
anisms lessens the space requirements for logs at the expense of
performance.

1.1 Use Cases for Distributed Replay
Debugging. Debugging distributed systems is a daunting task. In
addition to tracking down bugs that occur locally within a single
node of the system, bugs in distributed systems can be dependent
on deep communication chains involving a large number of nodes
across the network. Local-node record/replay can help with the
first class of bugs, but requires logging all communication between
nodes, which can be prohibitive for some applications. Further,
local-node record/replay does little to help find bugs of the second
class because the root causes of these bugs are visible only when the
entire distributed system is replayed as a unit. The space-efficient,
full-system record/replay mode provided by DDOS makes this
debugging technique more practical.

1.2 Use Cases for Distributed Determinism
Debugging. Determinism helps with debugging by making execu-
tion repeatable. For debugging, main difference between determin-
ism and record/replay is that a deterministic system enforces a par-
ticular communication schedule between nodes, obviating the need
to actually log this communication. The user can observe buggy
behavior again by simply re-running the application with the same
inputs.

Replication. A second application for distributed determinism
is to enable replication of an entire distributed system for fault-
tolerance. By instantiating multiple copies of a distributed system
and replicating the inputs to all copies, distributed determinism
guarantees that each replica evolves identically. Prior work on repli-
cating distributed databases has shown that deterministic execution
can remove the need for expensive cross-replica two-phase com-
mit protocols, simplifying code and potentially improving perfor-
mance [30].

1.3 Outline
The rest of this paper is organized as follows. Section 2 overviews
the DDOS architecture and provides some background on dOS,
which is used by the DDOS implementation. Sections 3 and 4
describe our high-level algorithms for distributed record/replay and
deterministic execution. Section 5 describes implementation details
of these algorithms. Section 6 offers a evaluation of our system,
Section 7 summarizes related work, and Section 8 concludes.

2. DDOS Architecture
DDOS builds on dOS [4], which is an operating system that pro-
vides deterministic execution of single-node, multiprocess, multi-
threaded programs. The basic abstraction provided by dOS is a de-
terministic process group (DPG), which is a group of local threads
and processes that execute as a single deterministic unit. In DDOS,
each node of the distributed system executes within its own DPG,
and the set of DPGs is collectively referred to as a distributed DPG
(DDPG).

Sections 3 and 4 detail how we leverage the single-node de-
terminism provided by DPGs. In the rest of this section, we sum-
marize the semantics of DPGs, and then describe how DPGs are
combined to form a DDPG.
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Figure 1. A Deterministic Process Group (from [4])

2.1 Deterministic Process Groups
A DPG is an abstraction that allows a group of multithreaded pro-
cesses to execute deterministically on a single node. Specifically,
DPGs provide a mechanism to partition the sources of nondeter-
minism that can affect a process into internal sources and external
sources: internal sources of nondeterminism are eliminated from
DPGs, but external sources of nondeterminism are fundamentally
nondeterministic and cannot be eliminated. Examples of internal
sources of nondeterminism include thread scheduling, hardware
timing variations, and communication between threads involving
pipes, shared-memory, local files, and so on. External sources of
nondeterminism include reading physical clocks and communicat-
ing with processes outside of a DPG.

Additionally, dOS defines a shim layer API that allowed pro-
grammers to interpose on all external nondeterminism. Any time a
DPG receives input from a nondeterministic external source, dOS
funnels that event through the shim layer, allowing the shim pro-
grammer to control how that nondeterminism is introduced. For
example, a shim may implement the record half of a record/replay
mechanism by creating a log entry on every nondeterministic event.

Figure 1 shows an example of a DPG containing two processes
and three threads communicating with each other using shared-
memory and a pipe. DPGs guarantee this communication happens
deterministically. Reading a physical clock or communicating over
the network occurs outside of the DPG and is therefore nondeter-
ministic, so this communication must first pass through the shim
layer. To enable deterministic execution, dOS schedules a DPG’s
execution onto a deterministic logical timeline. The scheduling al-
gorithm is described in [4]. dOS performs this scheduling in the op-
erating system kernel, transparently to applications, allowing it to
execute arbitrary, unmodified POSIX-compatible applications in-
side of a DPG.

2.2 Distributed DPGs
DDOS defines a distributed system as a set of deterministic process
groups which may be distributed across many different physical
machines. Hence, we call this set of DPGs a distributed DPG
(DDPG). Each DPG can itself contain one or more multithreaded
processes participating in the distributed system. Many DPGs can
execute on the same physical machine, and processes not in any
DPG can execute alongside DPGs on the same machine. In a
DDPG, the network is partitioned into an internal network that
connects all deterministic process groups in the DDPG, and an
external network that connects the DDPG to external processes and
machines.

Figure 2 shows an example of a DDPG. The DDPG shown is
composed of three deterministic process groups executing on two
different machines. All communication between DPGs 1, 2, and 3
will occur on the internal network. DDOS controls the internal net-
work to implement either space-efficient record/replay (Section 3)
or distributed determinism (Section 4). Communication with Pro-
cess F, which is outside of the DDPG, occurs on the nondetermin-
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Figure 2. A Distributed DPG

istic external network. All messages received from the external net-
work are considered nondeterministic input.

DDOS exposes the same POSIX-compatible sockets API that
Linux provides. Distributed applications can run inside DDPGs
without modification: record/replay and distributed determinism
are both provided transparently by DDOS.

3. Record/Replay with DDPGs
This section describes our algorithm for space-efficient record/re-
play of DDPGs. To help understand the trade-offs, we first discuss
how a traditional record/replay system would be implemented, and
then describe our algorithm in comparison to the traditional ap-
proach.

3.1 Single-Node Record/Replay
A traditional approach to record/replay for distributed systems
would record each node in the distributed system independently.
To reproduce a buggy execution, the node on which the bug man-
ifested would be replayed in isolation using the generated log to
reproduce the nondeterminism encountered in the original run.

While replaying the failed nodes independently may be conve-
nient, this approach suffers from two drawbacks. First, to ensure
accurate replay, all network communication between nodes in the
distributed system must be recorded. For some applications, the
amount of internal communication is so large that this approach
becomes infeasible. Second, some distributed system bugs can be
understood only after looking at chains of communication between
multiple nodes. This information is lost by single-node replay, mak-
ing these multi-node bugs significantly more difficult to debug.

3.2 Distributed Record/Replay
DDOS records each node independently but replays the entire dis-
tributed system as a unit. In this approach, messages between nodes
in the distributed system need not be recorded since they will be
regenerated during replay. Instead, we record just two sources of
nondeterminism at each node: 1) the logical arrival time of internal
messages; and 2) all external inputs that any traditional record/re-
play system would record, including external network packets,
clocks, and user input. During replay, we replace these sources of
nondeterminism exactly as specified in the log.

To understand why replay is deterministic, recall that all nodes
execute in DPGs. Thus, each node’s execution evolves determinis-
tically and therefore the network messages generated by each ap-
plication will be deterministic: as long as internal messages and
external input are delivered at the same logical time during replay,
messages sent by a DPG will occur at a deterministic logical time
and contain deterministic contents.

Reliable Channels. For reliable transport protocols such as
TCP, messages sent by one endpoint will be received completely
and in-order on the remote side; packet loss is handled transparently
by the underlying protocol. During the record phase, a process that
consumes data from the network can simply record the number
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Figure 3. When messages are regenerated during replay, different
UDP messages can be lost or reordered

of bytes read and the logical time the data was consumed. Replay
looks at the recorded timestamp and waits for that logical time to
arrive before receiving exactly the recorded number of bytes from
the network.

Unreliable Channels. For unreliable datagram protocols such
as UDP, message loss and reordering are exposed to the applica-
tion. As a result, the network may drop or reorder a different set
of datagrams during the record and replay phases, as shown in Fig-
ure 3. We handle this by appending a unique sequence number to
all UDP messages during the record phase. This sequence number
is stripped by the remote node on reception and written to the re-
play log. We then perform replay with a reliable connection and
simulate dropped (or reordered) packets during replay by dropping
(or buffering) unexpected messages on the receiving end.

Connection Management. Similar issues arise when estab-
lishing TCP connections during replay. Connections to internal ad-
dresses need to be reestablished during replay if they were success-
fully completed in the record phase. However, connection requests
that succeeded in the original execution may be dropped during re-
play. We handle this by retrying connections during replay until
they succeed.

Further, connection requests can be reordered by the network,
causing them to be accepted in a different order in the record and
replay phases. We avoid this by buffering new connections at the
accepting node during replay to ensure that new connections are
delivered to the application in the same order they were accepted
during the record phase.

Dealing With Failures. Node failures due to program bugs are
replayed deterministically. Node failures due to hardware crashes
are also easily replayed: the node hits the end-of-log during replay,
and stalls.

Hardware failures during replay are also possible. Although our
approach drastically reduces the required log size for many appli-
cations, it requires replaying all nodes in a distributed system at
once, increasing the possibility that some node will fail unexpect-
edly during replay (e.g., due to a hardware failure). Our system
assumes no failures during replay: if a node fails during replay, the
system must be restarted. We believe this is a reasonable assump-
tions because the typical use for record/replay is to observe a short
segment of execution in a debugging setting. Another feasible so-
lution would detect node failure during replay and then restart that
node from a checkpoint, as discussed later in Section 4.3.

Reconfigurable Systems. Because all recording operations are
local to a node (there is no global coordination), we naturally
support reconfigurable systems in which nodes may dynamically
enter or leave. This requires no changes to the above protocols:
a node enters a system by establishing connections, as described
above, and leaves by closing all open connections.



4. Deterministic Execution with DDPGs
Beyond record/replay, DDOS also implements a deterministic dis-
tributed execution algorithm. Our algorithm operates at the socket
layer, and its job is to ensure that messages on the internal net-
work of a DDPG are delivered deterministically. We first explain
the guarantees we desire from this algorithm, and then we describe
the algorithm itself.

4.1 Deterministic Guarantee of DDPGs
Our deterministic guarantee is that the entire DDPG executes as
a single deterministic unit, relative to input received from clocks,
users, the external network, and other sources of external nonde-
terminism. Our guarantee can be specified in two parts. The first
is local determinism, provided by DPGs, which ensures that each
node of the distributed system executes deterministically relative to
its own local inputs. The second part is global determinism, pro-
vided by DDPGs, which ensures that all messages sent on the in-
ternal network are received at a deterministic logical time and have
deterministic contents.

Our algorithm guarantees that messages sent on the internal net-
work of a DDPG are delivered deterministically. Specifically, we
ensure that network receive operations complete at a deterministic
logical time and return a deterministic number of bytes, with de-
terministic message contents. Further, we ensure that internal lis-
tening sockets accept connections in a deterministic order. These
guarantees apply to both TCP and UDP channels.

Processes in a DDPG can also communicate via network mes-
sages with processes outside of the DDPG. However, messages ex-
changed with these processes are transferred on the external net-
work, so they are delivered nondeterministically. Record/replay
techniques are needed to later reproduce these inputs.

4.2 Deterministic Network Protocol
The basic idea is depicted in Figure 4. We begin by observing that
communication occurs when a node receives a message from a re-
mote node, not when the message is sent. To ensure determinis-
tic communication, we need to ensure only that nodes consume
messages from remote nodes at deterministic points in their logical
time; DPGs will guarantee the sends will occur at a deterministic
time by construction.

We ensure deterministic message delivery by dividing execution
of the DDPG into global quanta. Conceptually, messages sent
along internal channels are buffered until the end of the global
quantum in which they were sent, and are delivered to the receiving
node before the next quantum begins. Global quanta end once
every node has signaled that it is ready to start the next global
quantum; this happens once the local node’s DPG has executed
some deterministic number of logical time steps. The number of
time steps need not be fixed and need not be the same for each
node, as long as it is chosen deterministically. The mapping of local
logical time to global quanta is illustrated in Figure 4.

A naı̈ve implementation of this algorithm might use a global
barrier to stall nodes at the end of every global quantum until
all buffered messages have been delivered. However, this is not
necessary. Global quanta can be propagated lazily. We do this
by having each node push an end-of-quantum marker down its
internal network channels every time it reaches the end of a global
quantum. Remote nodes buffer data as it arrives and are allowed to
consume data only up to the end-of-quantum marker of the previous
quantum. This ensures that remote nodes consume data only if that
data was sent in a prior global quantum.

Figure 5 illustrates this lazy protocol. In this figure, DPGA

is currently executing in global quantum 3, and is communicat-
ing with three other DPGs over network channels which are shown
as queues. DPG1 and DPG2 are currently executing in global
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quantum 4, so they have sent three end-of-quantum markers down
their network channels, while DPG3 is executing in global quan-
tum 2, so it has sent just one marker. The darker shaded region in
this figure shows the portion of data that is currently available for
DPGA to read: since DPGA is executing in the third global quan-
tum, only data sent from the first two global quanta are available.
Further, note that DPG3 is currently executing behind DPGA and
has not yet sent any data, other than the end-of-quantum marker. If
DPGA attempts a recv operation on the connection with DPG3,
that recv cannot complete until DPG3 has either sent another end-
of-quantum marker or pushed enough data onto the channel to sat-
isfy the request.

Figure 5 also illustrates how we allow each node’s notion of
current global time to drift from the other nodes, as long as the basic
communication constraints are enforced: threads can only consume
data from the internal network that was sent in an earlier global
quantum. This relaxation can be a significant optimization when
compared to a naı̈ve protocol using global barriers. In the limit,
when the nodes do not communicate, each node can advance its
own view of global time arbitrarily, without waiting for the other
nodes to catch up. Only when a node receives data from a remote
node must it potentially synchronize with that node.

Promiscuous Operations. Some network operations—such as
accepting connections, polling for data with poll, or promiscuous
receives on UDP sockets—can receive data from multiple remote
nodes in a single call. These operations require that the caller waits
for all nodes it could communicate with to catch up in global time
before the operation can complete. Once all such nodes have caught
up, we deliver incoming data from one sending node at a time, after
ordering sending nodes in some deterministic order. For example,
a accept operation first waits until it has received an end-of-
quantum marker for the prior quantum from all other nodes. It then
gathers all connection requests, orders them, and finally delivers
the connection requests in that order to ensure they are processed
deterministically.



In the worst case, where all nodes call globally promiscuous
operations such as accept in every global quantum, every node
will be forced to wait for every other node at the end of every
quantum, degrading the relaxed protocol to the naı̈ve protocol that
uses global barriers.

Unreliable Channels. Messages sent over UDP channels can
be arbitrarily dropped or reordered by the network. We must guar-
antee in-order lossless message delivery to ensure determinism.
Thus, in deterministic execution mode, DDPGs tunnel all UDP
connections over a reliable TCP connection.

Reconfigurable Systems. Nodes may leave a DDPG via exit-
ing: this is already deterministic because of the local determinism
provided by dOS. Joining a DDPG, however, represents a funda-
mental source of external nondeterminism in the time at which a
node joins. For this reason, we do not consider joins to be useful
operations in deterministic execution mode, and we do not support
them. (We do support joins in record/replay mode; see Section 3.2.)
If desired, join(N,DDPG) could be implemented by adding a two-
phase commit protocol, to allow all nodes to agree on the quantum
at which N joins the DDPG, and by logging that quantum for use
during further replays.

4.3 Dealing With Failures
Failures in large distributed systems occur frequently, so it is im-
portant to understand how these failures affect DDOS. When one
DPG attempts to receive data from another DPG along an internal
channel, that node needs to wait until the correct end-of-quantum
marker is received before data can be returned. If the sender of the
data (and thus the marker) fails, the receiver can not continue. This
sender/receiver synchronization constrains communication onto a
deterministic logically synchronous network.

An initial strategy for coping with failure might be as follows:
detect a failed node, restore the node from a checkpoint, replay
its inputs up to the current state of the system, and finally resume
distributed execution. However, distinguishing a failed node from
a slow node is difficult, and further, when a node fails, all other
nodes in the system must agree on the exact logical time at which
that node failed. Detecting failures with this degree of accuracy is
a consensus problem which is impossible to solve on asynchronous
physical networks given an arbitrary failure model [13].

Thus, a side-effect of the logically synchronous network model
is that DDOS cannot guarantee forward progress while preserving
determinism without making assumptions about the failure rate of
the distributed system. If these assumptions are broken, DDOS
must give up either determinism or forward progress. As a further
consequence of consensus impossibility, DDOS cannot detect with
complete certainty when these assumptions are broken. Therefore,
our deterministic guarantees are at best probabilistic, even though
these probabilities may be quite high in practice.

One simple way to deal with this problem is to implement a
physical timeout mechanism that triggers when a node has not
received an end-of-quantum marker from a remote node in some
predefined amount of physical time. If the node is blocked on an
operation waiting for an end-of-quantum marker to arrive and the
timeout triggers, the blocked node can use this timeout to detect
a possible failure, and alert the system. A user could then decide
to restart the node, to continue to wait, or to continue without
waiting and sacrifice determinism from that point forward. This
might even be incorporated into a larger consensus protocol, such
as Paxos [22]. We have not yet implemented this mechanism or
investigated it further.

Finally, we note that the problem of failures is common to all
systems for deterministic execution, not just DDOS. The fact that
DDOS deals with distributed systems simply exacerbates the prob-
lem. For example, even in a hardware implementation of determin-

jerry 6000 t:10000 memcached

tom   5000 t:80,u:512 web−server

Figure 6. An example of a manifest file specifying a two-node
DDPG

ism, such as DMP [8], determinism could be lost as the result of an
alpha particle causing a random bit flip in memory.

5. Implementation
DDOS is implemented on top of dOS [4] as a distributed shim
program. It uses dOS’s shim API to interpose on all socket-related
system calls made by a DPG. Depending on the mode of the
DDPG (either record/replay or deterministic execution), the shim
will either record the results of these system calls to a log, replay
the results of the system call from a log, or execute the system call
in a deterministic way.

Implementing DDOS as a dOS shim means the physical net-
work is outside of DDOS’s control. In other words, the DDOS
shims replay or make communication deterministic at the system
call layer, but an eavesdropper watching the packets in transit be-
tween physical machines could see either imprecise replay or non-
determinism. The shims at either side of the connection, however,
ensure that communication observed by the applications is properly
controlled.

5.1 Creating a DDPG
A DDPG consists of a set DPGs executing on physical machines,
along with a specification that partitions the network into internal
and external channels. To construct a DDPG, the developer writes a
manifest file. The manifest contains an entry for each of the DPGs,
specifying the command to execute, the node to execute the DPG
on, as well as the set of TCP and UDP ports on that node that
are considered internal to the DDPG. When used for deterministic
execution, the manifest also indicates which port the DPG should
use for control channel connections (Section 5.3). Note that internal
channels can only be used to communicate with DPGs: if a port
will ever be used by both DPGs and processes outside of a DPG,
the port cannot be marked as internal.

Figure 6 shows an example of a manifest file specifying a two-
node DDPG. web-serve will be run within a DPG on the host
tom, and connections to TCP port 80 and UDP port 512 will be
treated as internal; all other connections will be treated as external.
Similarly, memcached will run within a DPG on host jerry with a
single internal TCP port.

5.2 Record/Replay
The DDOS record/replay shim is implemented as an extension
to the single-node record/replay shim originally implemented for
dOS. Most of the implementation effort was tedious but straight-
forward, following prior work on record/replay. Our record shim
emits an execution log that can be read by the replay shim. The log
files are not compressed, and thus further reduction in log size is
likely possible if compression was included.

UDP Sequence Numbers. As described in Section 3.2, UDP
messages are tagged with a unique sequence number before being
sent. Each thread in a DPG maintains a count of the number of
UDP messages it has sent. The sequence number assigned to each
outgoing UDP message is a tuple of the sending DPG’s id, the send-
ing thread’s id, and the current UDP message count of that thread.
Because the DPG ids, thread ids, and the UDP message count are
all deterministic, these sequence numbers are deterministic as well
and can be used to replay UDP communication.



Establishing Connections. If a connection on the internal net-
work was successfully completed during recording, the connection
must be successfully completed during replay. However, due to
timing variations (Section 3.2), a connection that succeeded dur-
ing record may fail during replay (for example, the connector may
call connect before the remote node has had a chance to invoke
listen). To ensure the same behavior during replay, the replay
shim may pause the DDPG execution until the connection can be
reestablished and will retry the connection attempt until it succeeds.

Replaying Connection Order. Similarly, DDPGs must ensure
that incoming internal network connections are accepted during re-
play in the same order observed during the record phase. To replay
the correct order, the DDOS shims buffer all incoming connection
requests during replay; when a process calls accept, the buffered
connections are checked against the log see if the expected con-
nection has already arrived. If so, the connection is returned to
the caller and the DPG that initiated the connection is notified. If
the expected connection is not already buffered, the call to accept
blocks until the anticipated connection is received.

Log Durability. Our current implementation writes log en-
tries to disk asynchronously, as synchronous writes would be pro-
hibitively expensive. This may introduce a window of record loss
during a hardware failure. More advanced storage systems [27] or
upcoming new hardware [24] may make synchronous writes more
viable.

5.3 Deterministic Execution
DDOS implements our deterministic message delivery algorithm
with a distributed shim program. This shim program interposes on
all socket-layer operations performed by applications to ensure that
internal network communication happens deterministically.

Upon startup, the DPGs enter a brief initialization phase where
the manifest file is read, pairwise control channels are established
between DPGs, and DDPG configuration values—such as the size
of a global quantum—are exchanged. Each DPG is assigned a
unique id derived from its position in the manifest file. After the
initialization phase, the DPGs begin executing their respective pro-
grams.

Control channels are used by the DDOS shims to coordinate
their execution. Messages sent on the control channel have one
of four types, described in Table 1. CMT ENDQ messages broadcast
by a DPG at the end of every global quantum. CMT CONNREQ and
CMT CONNRESP messages are used to establish virtual network con-
nections between the applications. CMT DATA messages are used to
transfer application-level data along a virtual connection.

Control channel are reliable, in-order network connections. All
internal network connections between two nodes are multiplexed
on to the single control channel connecting the nodes, and both
application-level data and the DDOS protocol are transferred along
this connection. Because the control channels are in-order, when a
DPG sees a CMT ENDQ message from a particular node for quantum
n, it is guaranteed to have already seen all other messages sent by
that same node in quantum n.

Connection Management. To establish an internal network
connection, the local DPG sends a CMT CONNREQ message to the
remote DPG containing the target port number, as well as the local
port number it’s connecting from. Because Linux randomly assigns
port numbers to sockets, the port numbers used in DDOS are virtual
port numbers, assigned deterministically by the DDOS shims.

The remote DPG buffers all connection requests in a sorted
queue for the target listening socket. Each request is tagged with
a tuple consisting of the global quantum in which the request was
sent, the unique id of the connecting node, and the port number the
request originated from. The queue is sorted based on this tuple.
Requests from prior global quanta are satisfied from the queue in

Type Description
CMT ENDQ Broadcast by a node at end of global quan-

tum
CMT CONNREQ Connection request sent from one DPG to

another
CMT CONNRESP Response for a connection request, indicat-

ing connection success or failure
CMT DATA Contains application-level data being sent

between process in a DDPG

Table 1. Control channel message types

sorted order, while requests from future quanta are kept buffered.
Once a connection is accepted (or if the connection request is
denied because a listening socket does not exist on the target port),
the remote DPG responds with a CMT CONNRESP message.

Communicating on Internal Channels. Sending data on an
internal channel creates a new CMT DATA message containing the
length of the message and the data being sent. The message is sent
along the control channel to the receiving node. Upon reception
of a CMT DATA message, a receiving node reads the entirety of
the message and buffers the message in a queue representing the
virtual port of the receiving socket. Each message is tagged with the
global quantum in which it was sent. Messages from prior global
quanta are delivered from the queue in-order, while requests from
future quanta are kept buffered. For promiscuous UDP channels,
messages are additionally tagged and sorted in the same way that
connection requests are tagged and sorted.

Poll/Select Optimization. As mentioned previously in Sec-
tion 4.2, promiscuous network operations such as poll and select
can potentially add significant overheads to deterministic execu-
tion due to the high cost of synchronizing logical timelines across
nodes, but this synchronization can sometimes be avoided. For ex-
ample, when performing a poll operation on a set of file descrip-
tors, synchronization with remote nodes can be avoided if either:
1) the remote node’s view of global logical time is later than the
node’s performing the poll; or 2) the remote node’s view of global
logical time is earlier than the caller’s, but all file descriptors be-
ing examined by poll from that node have some amount of data
already available.

In the first condition, the remote node is operating in the future
relative to the caller’s notion of global logical time. Thus, any data
sent by the remote node has already been received by the caller, and
no additional synchronization is needed to satisfy the poll request.

The second condition exploits the fact that the poll family of
functions return only a Boolean result indicating whether or not
data is available to read—not how much data is available. As long
as all file descriptors associated with a remote node have some
data that is currently available from a logical time earlier than the
caller’s notion of global logical time, poll can deterministically
return a true result without first synchronizing; synchronization can
be delayed until the two nodes communicate with a recv operation.

Resource Exhaustion. System limits on resource usage, such
as limits on open file descriptors, can pose difficulties for cor-
rect deterministic behavior. To understand why, consider running
a DDPG twice, where no other processes are run on the system
during the first execution, but a nondeterministic background pro-
cess runs during the second execution. If that background process
in the second execution opens a large number of file descriptors,
the DDPG might be unable to open all of the descriptors it needs
to complete, possibly causing the two executions to behave differ-
ently. This scenario could be dealt with in two ways: 1) pause the
execution of the DDPG until the request can be completed (for ex-
ample, by waiting for the other process to close some of its de-
scriptors), or 2) report the error to the user and abort execution of



the DDPG. For simplicity, our system implements the second ap-
proach, leaving implementation of the first method to future work.

6. Evaluation
This section evaluates DDOS. The goal of our evaluation is to an-
swer the following three questions: 1) What are the performance
overheads of using DDOS for record/replay and for deterministic
execution, relative to nondeterministic execution outside of DDOS?
2) How effective is our space-efficient record/replay mechanism at
reducing the size of replay logs? 3) Where do the runtime over-
heads come from? A more qualitative goal of this evaluation is to
demonstrate that we can support real-world applications.

6.1 Applications
We evaluated DDOS with three different types of distributed ap-
plications: a microbenchmark with frequent peer-to-peer traffic, a
reactive web application with a remote file server, and a distributed
scientific application based on the OpenMPI libraries. The dis-
tributed scientific application comes from the NAS Parallel Bench-
mark suite [25].

Peer-to-peer Microbenchmark. The peer-to-peer microbench-
mark is a custom program adapted from the racey determinis-
tic stress test [15] that we call racey-dist. racey-dist is a
distributed application with single-threaded nodes. The nodes in
racey-dist form a completely connected graph and send and re-
ceive data to the other nodes in the system with high frequency;
the data sent and received is combined by each node to compute a
signature that is highly sensitive to the pattern of communication,
including both the order and content of messages.

Reactive Webserver. The reactive webserver is composed
of two applications: a multithreaded server that handles web re-
quests from clients, and a multithreaded instance of memcached
that serves the files to the webserver from an in-memory database.
For our evaluation, each application was run on a separate evalu-
ation node, and a third computer external to the DDPG was used
to generate web requests. We used the ab benchmarking utility
from Apache to generate the workload. Both the webserver and the
memcached server were configured to run with 8 threads.

OpenMPI Scientific Application. From the NAS OpenMPI
parallel benchmarks, we ran is, a large-scale integer sorting kernel.
We vary the number of MPI processes from 2 to 16, with the threads
evenly divided amongst the nodes. Because OpenMPI uses the ssh
protocol to remotely spawn tasks, we also ran a separate dropbear
ssh daemon inside each of the DPGs to accept these connections.

6.2 Correctness
We ran racey-dist in a deterministic DDPG 20 times and verified
that all executions produced the same signature. For comparison,
20 nondeterministic runs of racey-dist produced 20 different
signatures.

racey-dist stresses the connection management and end-to-
end communication of our implementation, so we believe these
components are correct. This benchmark also stresses the lazy bar-
rier implementation by buffering connection requests and message
contents until global barriers. Our selection of other applications
provide an indirect demonstration that the remaining operations—
such as promiscuous communication, UDP transmissions, poll
and select, etc.—likely behave properly. The NAS benchmark
in particular exercises complex connection management and relies
heavily on promiscuous socket operations. We have released the
source code 1 and encourage readers to independently test our im-
plementation.

1 Source code is available at http://sampa.cs.washington.edu.

Execution Time Log Sizes (MB)
Benchmark Nondet DPGs DDOS DPGs DDOS
racey-dist
2 threads 3 ms 236 ms 135 ms 0.27 0.15
3 threads 22 ms 349 ms 176 ms 0.41 0.23
4 threads 7 ms 307 ms 168 ms 0.54 0.30
www
8 threads 2.5k r/s 188 r/s 217 r/s 599 146
is
2 threads 1.53 s 2.09 s 1.59 s 180 4
4 threads 1.11 s 1.73 s 1.19 s 272 7
8 threads 1.00 s 29.48 s 26.63 s 374 107
16 threads 1.23 s 49.05 s 40.79 s 443 168

Table 2. Execution time of the recorded execution and the result-
ing log sizes. Nondet is nondeterministic execution; DPGs is each
node performing a local record; and DDOS is a DDPG record,
where nodes only record communication external to the DDPG.

6.3 Methodology
The evaluation was performed on a five node cluster, each running
a dOS-enabled 2.6.24.7 Linux kernel. Four of the machines have
2 Intel Xeon X5550 quad-core processors and 24GB of RAM; the
fifth node has 2 Intel Xeon E5520 quad-core processors and 10GB
of RAM. Each of the experiments below was executed three times,
and the average measure of performance is reported.

We use an application-specific measure of performance for each
application. For the racey-dist and MPI benchmark, we measure
the wall-clock time required to complete the workload. For the
webserver benchmark, we use the number of requests handled per
second.

6.4 Record/Replay
Table 2 shows the runtime of the recorded executions and the result-
ing log sizes in MB. For www, requests per second is used instead
of execution time to report performance in a more meaningful way.
Each row contains the results for a single application run with the
specified number of threads.

Column 2 shows performance when the distributed system is
run nondeterministically, without the use of DPGs or DDPGs. Col-
umn 3 shows the results when each node is its own DPG, perform-
ing local node recording with the record/replay shim developed in
[4]. This column demonstrates the overhead of using a traditional
record/replay mechanism as described in Section 3.1, which does
not exploit the deterministic properties of DDPGs when logging
network communication. Column 5 provides the log sizes produced
with this local recording strategy. Finally, Column 4 provides the
execution times when DDPGs are used to reduce the logging of
network traffic to only that which is external to the DDPG, as de-
scribed in Section 3, with Column 6 giving the resulting log sizes.

A comparison of Columns 2 and 3 shows that the overhead of
dOS’s deterministic scheduler plus the overhead of logging local-
node inputs results in a 1-2 order of magnitude slowdown in per-
formance. The logs in these executions vary between 200 MB and
600 MB in size.

A comparison of Columns 5 and 6 shows that not logging the
internal traffic of a DDPG results in a significant reduction in
log size (about 70% in some cases). We also observe that when
executing within a DDPG with internal sockets, the application
always recovered some performance compared to separate DPGs
with record/replay shims. Some of this performance likely comes
from not needing to write as much data to disk.

For the is benchmark with 8–16 threads, both the log size
and performance overheads grew significantly from the execution
with 4 threads. In these cases, we observed a large increase in the
invocations of poll and the rdtsc instruction (an x86 instruction



that reads a hardware timer) by the application. We suspect this
behavior is due to a mechanism in OpenMPI that is enabled when
more than one MPI task is executed on a single node. In these cases,
over 95% of the entries in record log were for these two operations,
and likely contributed to the higher performance overhead as well.
This is an example of a case where OS-level record/replay isn’t
the most efficient solution: a record/replay mechanism at the MPI
layer would not be exposed to the poll system call and rdtsc
instruction, and so would probably not see the same performance
and logging penalty at the higher thread counts.

Although the record shim does not currently compress the logs
during execution, manually compressing the logs after the execu-
tion shows that a 50-60% reduction in log size for these applica-
tions is possible.

6.5 Deterministic Execution
To evaluate the overheads of deterministic distributed execution, we
ran each benchmark in four different modes. Table 3 reports these
results. Column 2 shows the application-specific performance mea-
surement when the benchmark is run nondeterministically, with-
out the use of DPGs or DDPGs. Column 3 shows the performance
when each node is run as a separate DPG, without an encompass-
ing DDPG. In other words, each node runs dOS, but network com-
munication between the nodes is still nondeterministic. Column 4
shows the performance metric when the distributed system is exe-
cuted within a fake DDPG; the fake DDPG does not actually en-
force deterministic network communication, but allows us to mea-
sure the overhead of just constructing the DDPG and interposing
on all socket-layer operations. Finally, Column 5 shows the per-
formance metric when the application is run within a deterministic
DDPG, enforcing deterministic network communication between
the nodes.

The difference in performance between Columns 2 and 3 is the
overhead directly attributable to dOS. In theory, this represents the
best performance that DDOS could achieve. In general, we see that
the performance tends to be worse for higher thread counts. This
is due to serialization of threads by the dOS scheduling algorithm
due to resource sharing between the threads in the DPGs (for in-
stance, shared-memory locations or the kernel’s file descriptor ta-
ble). A more complete evaluation and characterization of dOS’s
performance is available in [4]. dOS does not use a state-of-the-art
deterministic scheduler; the addition of more advanced algorithms,
such as those in [9], could contribute a substantial performance im-
provement. Most importantly, in this paper, we are primarily con-
cerned with the overhead added by our algorithm for deterministic
network communication, not with the overhead of local-node de-
terminism.

Column 4 adds the cost of creating the DDPG, multiplexing net-
work communication over a control channel, and sending end-of-
quantum tokens between the nodes. In this mode, communication
remains nondeterministic. We see that this additional communica-
tion imposes almost no additional overhead for racey-dist, and
between 30% to 50% for www and is. Some results in this column,
such as the 3 and 4 thread runs of racey-dist, show better perfor-
mance than the corresponding value in Column 3. We would expect
that the results for Fake DDPG would always be worse than DPG
executions and believe these non-intuitive results are within mea-
surement error for these experiments.

Finally, column 5 shows the performance when all communica-
tion between nodes occurs deterministically. The sources of the ad-
ditional overheads include nodes waiting for remote nodes to catch
up in logical time, and a small amount of additional coordination
between the nodes. We see that for racey-dist, where communi-
cation occurs very frequently and with many nodes, the overheads
of deterministic communication are the highest, with a roughly two

Fake
Benchmark Nondet DPGs DDOS DDOS
racey-dist
2 threads <0.01 s 0.46 s 0.48 s 5.33 s
3 threads 0.02 s 0.47 s 0.44 s 1.77 s
4 threads 0.01 s 0.49 s 0.48 s 3.82 s
www
8 threads 2.5k r/s 331 r/s 225 r/s 155 r/s
is
2 threads 1.53 s 1.91 s 1.52 s 10.85 s
4 threads 1.11 s 2.70 s 1.13 s 11.34 s
8 threads 1.00 s 2.64 s 2.41 s 40.17 s
16 threads 1.23 s 4.77 s 6.15 s 55.35 s

Table 3. Execution times for the deterministic execution evalu-
ation. Nondet is nondeterministic execution; DPGs is local de-
terminism only; Fake DDOS sends end-of-quantum markers but
doesn’t enforce deterministic communication; and DDOS is fully
deterministic distributed execution.

order of magnitude slowdown. This is attributable to the frequent
synchronization of logical clocks, where one node must pause its
execution waiting for the other node to catch up. For www, we ob-
serve a 16x slowdown compared to nondeterministic execution. We
characterize the sources of overhead in more detail in the next sec-
tion.

6.5.1 Record/Replay and Deterministic Execution Trade-offs
We briefly mentioned the trade-offs between the record/replay
mechanism and the deterministic execution mechanisms in Sec-
tion 1. The above evaluation demonstrates this trade-off empiri-
cally.

Consider, for example, the racey-dist benchmark. Executing
in the record/replay mode of DDOS, racey-dist was able to
finish its execution in less than a second for all of the configurations
evaluated. However, it needed to record about 150 KB - 300 KB to
do so. The deterministic executions all required over a second to
finish, but did so with minimal logs. This same trade-off can be
observed in the results for the other two applications as well.

6.5.2 Overhead Characterization
Reasons For Waiting. Our algorithm might introduce slowdown
whenever it forces a node to wait for an end-of-quantum marker
from a remote node. Table 4 partitions the total time DDPGs spend
waiting into three categories: promisc shows the percentage of wait
time due to the promiscuous select or poll operations; connect
shows the percentage of wait time spent establishing connections
with connect and accept; and data shows time spent waiting
for data to become available on a deterministic socket (a blocking
recv, for example).

Consider the www benchmark. memcached and www communi-
cate constantly with one another to satisfy incoming web requests.
As a result, a majority of wait time is due to nodes synchroniz-
ing their logical clocks while communicating: 91% of wait time
is due to this synchronization. A small percentage of the time is
attributable to connection setup and tear-down between the web-
server and memcached at the beginning and end of the execution.

The is benchmark does more computation than communica-
tion, demonstrated by the fact that only 10% of its wait time occurs
during data transmission. Surprisingly, the remaining 90% of the
wait time is due to synchronization in the poll family of functions.
These functions, due to their promiscuous nature, can be extremely
expensive, in the worst case requiring the caller to synchronize log-
ical time with all nodes in the system. In this application it was the
dropbear ssh daemon running in each of the DPGs that was re-
sponsible for these promiscuous operations, rather than the actual
is MPI tasks. This suggests that removing dropbear from DPG



Reason for Waiting
Benchmark Promisc. Connect Data
racey-dist 18% 21% 61%
www <1% 9% 91%
is 90% 0% 10%

Table 4. Percentage of time spent blocked waiting for promiscuous
operations, connection requests/responses, or data

after the initial MPI tasks have been spawned could lead to a sig-
nificant performance improvement.

Finally, for the racey-dist microbenchmark, the time spent
waiting for connection setup is higher that other benchmarks, likely
due to its relatively shorter running time.

Quantum Drift. We also measured quantum drift to evaluate to
what degree distributed execution was synchronous; high values of
drift suggest that lazy quantum barriers had a significantly positive
effect on performance. We define quantum drift between node A
and remote node B to be the difference between node A’s current
global quantum and the most recent end-of-quantum marker that
node A has received from node B.

We instrumented DDOS to compute the maximum quantum
drift at every quantum boundary and capture the summary as a
histogram. All three benchmarks exhibited a similar trend: the
quantum drift was mostly either 0 or 1 quantum, meaning the nodes
executed mostly synchronously, but all benchmarks had a long tail
of larger drifts, in some cases extending to hundreds of quanta. For
racey-dist, 86% of drifts were either 0 or 1 quantum, with a tail
spread evenly out to 16 quanta. For www, these numbers were 99%
with a tail to 220 quanta, and for is, 98% with a tail to 580 quanta.

7. Related Work
Record/Replay. There have been many proposals for software-
based implementations of record/replay. These include systems that
provide record/replay of local nondeterminism only, as well as sys-
tems that provide record/replay for an entire distributed application.

Of the single-node systems, some record nondeterminism at the
system call layer only [29], making replay of multithreaded appli-
cations impossible. Others record nondeterministic thread sched-
ules to support multithreaded programs. These include systems that
assume uniprocessor execution and record only scheduling deci-
sions [7], as well as systems that support multiprocessors and ei-
ther record all shared-memory accesses [11, 19, 23] or just syn-
chronization operations [28, 32]. Nondeterminism arising from lo-
cal sources is eliminated by DPGs, so DDOS never needs to record
it.

Other systems provide record/replay for entire distributed sys-
tems. liblog [14] provides consistent distributed system replay,
but is implemented as a userspace library and thus does not support
multithreaded execution at the nodes (multithreaded applications
are supported, but execution of the threads is serialized). It uses
techniques similar to Jockey [29] to record local nondeterminism
introduced through libc library calls, and additionally tags net-
work messages sent between nodes in the system with Lamport
clocks to coordinate replay. All messages received over the net-
work by liblog are logged to disk, along with the time they were
received.

DejaVu [18] provides record/replay for distributed Java appli-
cations and is implemented in a custom JVM. Cooperative Re-
Virt [2] provides record/replay for arbitrary distributed applica-
tions. DejaVu, Cooperative ReVirt and DDOS all make the same
observation: internal network messages can be regenerated during
replay to save log space. Unlike DDOS, however, both DejaVu and
Cooperative ReVirt must record all local-node nondeterminism–
including shared-memory access interleavings–so they are not able

to achieve the same log size reduction that DDOS achieves by ex-
ploiting local-node determinism.

Deterministic Execution. Prior systems for deterministic exe-
cution have focused on single-node multithreaded programs. These
systems eliminate the nondeterminism due to thread scheduling
and shared-memory access interleavings. Some systems require
custom hardware support [8, 9, 16] while others work purely in
software [1, 3–5, 26]. A common approach divides execution into
quanta, where communication is prevented for the majority of a
quantum and then allowed to happen in a deterministic way when
the quantum completes. The deterministic algorithm we proposed
for DDOS is most similar to the buffering algorithm proposed by
CoreDet [3]: both buffer communication during the quantum, then
release communication at the quantum boundary. However, Core-
Det’s algorithm does not support message queues, and further does
not include the lazy-barrier optimization, which is vital for per-
formance on networks that have much higher latency than shared-
memory.

Kahn networks [17] are a deterministic model of network com-
munication where processes communicate through unbounded
point-to-point queues. It is difficult to schedule arbitrary programs
onto Kahn networks without introducing deadlock [12]. Determi-
nator [1] supports multi-node deterministic distributed execution
through a limited tree-based communication model that is a re-
stricted form of Kahn network. This limited communication model
is mostly used to implement a deterministic distributed shared-
memory system. Like all Kahn networks, Determinator does not
support many-to-one operations such as a promiscuous UDP recv.

Distributed Systems. Our algorithm for deterministic execu-
tion is a vector clock [20] algorithm: a node’s current vector clock
is defined by its current global quantum combined with the end-of-
quantum markers it has received from remote nodes. Consequently,
our algorithm bears resemblance to other distributed systems algo-
rithms, most notably those for taking distributed snapshots [21],
which broadcast local time coordinates in similar ways to our algo-
rithm.

Virtual synchrony [6, 31] provides an atomic multicast primi-
tive. Processes can join one or more process groups, and messages
can be sent by processes to these groups. A process does not need to
be a member of a group to send that group a message. Virtual syn-
chrony ensures that all nodes in the receiving process group receive
the same set of messages and in the same order, even if those mes-
sages were sent from multiple processes. Virtual synchrony does
nothing to address the nondeterminism at the nodes in the system.
DDOS’s implementation of a logically synchronous network, how-
ever, has one important difference: it guarantees deterministic com-
munication, rather than simply guaranteeing a consistent order of
message delivery.

8. Conclusions
The goal of our work is to understand and explore the role of de-
terminism in distributed systems. We leverage prior work on deter-
ministic multithreading to: 1) significantly reduce log sizes when
recording execution of distributed applications; and 2) determinis-
tically execute entire distributed applications from the ground up.
We proposed the first algorithm and system for deterministic ex-
ecution of arbitrary distributed applications and prototyped it in a
system we call DDOS.

We have shown that our record/replay mechanism significantly
reduces log-sizes, resulting in log savings of 70% in some cases, al-
though at a cost of an order-of-magnitude slowdown in application
performance. We also evaluated our deterministic execution algo-
rithm and showed that we can completely eliminate the log of com-
munication between the nodes of a distributed system, although the
cost of doing so is usually higher.
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