Configuration Debugging as Search: Finding the Needle in thelaystack

Andrew Whitaker, Richard S. Cox, and Steven D. Gribble
University of Washington
{andrew, rick, gri bbl e}@s. washi ngt on. edu

Abstract

Fault point

This work addresses the problem of diagnosing con- Time —————» /
figuration errors that cause a system to function incor-
rectly. For example, a change to the local firewall policy
could cause a network-based application to malfunction.
Our approach is based on searching across time for the
instant the system transitioned into a failed state. Based ~ N
on this information, a troubleshooter or administrator can system was system was
deduce the cause of failure by comparing system state working NOT working
before and after the failure. .

We present the Chronus tool, which automates thézlgure 1:Searching through time for a configuration error:

task of searching for a failure-inducing state Ch(,mge'Chronus reveals configuration errors by pinpointing théaimis

Chronus takes as input a user-provided software probér,1 time the system transitioned to a failed state.
which differentiates between working and non-working
states. Chronus performs “time travel” by booting a vir- diagnosed by human experts such as system adminis-
tual machine off the system’s disk state as it existed atrators. This approach suffers on a variety of fronts:
some point in the past. By using binary search, Chronugained experts are expensive, they are in short supply,
can find the fault point with effort that grows logarithmi- and they are faced with escalating system complexity and
cally with log size. We demonstrate that Chronus can dichange. In consequence, system administrative costs are
agnose a range of common configuration errors for bott@pproaching 60-80% of the total cost of ownership of in-
client-side and server-side applications, and that the peformation technology [12].

formance overhead of the tool is not prohibitive. The goal of this work is to reduce the burden on
human experts by partiallgutomatingproblem diagno-
1 Introduction sis. In particular, we analyze the applicabilitysd#arch

techniques for diagnosing configuration errors. Our in-
Continual change is a fact of life for software sys- Sight is that although computers cannot compete with
tems. For desktop machines, users can install new applRuman intuition, they are very effective at exploring a
Cationsy app|y software upgradesy Change Security po"l.arge Configuration space. Our diagnOSiS tOOl, which we
cies, and alter system configuration options. Servers ang@ll Chronus, uses search to identify the specific time in
other infrastructure services are also subject to frequerfhe past when a system transitioned from a working to
changes in functionality and administrative settings. & non-working state, as shown in Figure 1. Using this
The ability to change is what gives software its vi- information, an administrator can more easily diagnose
brancy and relevance. At the same time, change ha¥hy the system stopped working, for example, by com-
the potential to disrupt existing functionality. For exam- Paring the file system state immediately before and after
ple, software patches can break existing applications [5]'ghe fault point to determine the configuration change that
Seemingly unrelated applications can conflict — for ex- Proke” the system.
amp_le, by_ corrup_ting Windows registry key_s or sh_a_redL1 Existing Approaches
configuration options. Changes to security policies,
while often necessary to respond to emerging threats, can In this work, we focus on automated problem diag-
disrupt functionality. For server-side applications, ad-nosis. For the sake of completeness, we briefly survey
ministrator actions and other “operator errors” [17] areother approaches, arguing that the approach embodied
a substantial contributor to overall downtime. by Chronus represents an advance for a significant class
In most cases, these change-induced failures aref configuration errors.

The best approach to dealing with configuration er-

rors isprevention. Unfortunately, the complexity of to- User-written .
day’s systems makes it difficult to reason a priori about software probe Is the system working?
all possible side effects of a configuration change. One

problem is that modern systems are built from compo- 1

nents from many vendors, and there are few global mech- When did the system

anisms that are capable of understanding the effects of Chronus stop working?
configuration changes in the large. The situation is fur-

ther exacerbated by the inadequacy of analysis tools. For l

example, determining whether a software patch results in

“equivalent” system behavior is intractable. Analysis tools Why did the system

. - - - t king?
Recoverytools such as Windows XP Restore [24] (diff, regdiff, log files) Stopworking

create occasional state checkpoints, allowing users to
‘undo” [8] the effects of bad configuration changes. Figure 2: A Chronus debugging session:Given a user-

While effective in some situations, this approach facesy,pplied software probe, Chronus reveals when the system be
several limitations. First, it requires the user to chooseyan failing. Based on this information, it is possible to end

an appropriate state snapshot, which assumes that sorsgnd the cause of failure using higher-level analysisstool

form of problem diagnosis has already occurred. Second,

recovery itself can corrupt system state, either by undoétate over time by logging disk block writes. Chronus

'(;g gggg izhgﬂgsr?uosr (;?)Setsrr:r:)? n?(?(;ji f; Zagtge:ers.sfa:?eblzr ses the:Denali virtual machine monitor [35] tmstan-
9 y ' late, boot, and test historical snapshatsthe system,

can therefore be safely employed in more situations. including the complete operating system and application

as CEr:;g?]::ss¥r?tter1r2td£r?gngf;§r:wo?lfohrr?\;e ?rosrlnms”ar;g?oarL state. Chronus executes the user-supplied software probe
’ y P P YMPIOM3, ot whether a given historical state works correctly.

o a root cause. A widely used (though rudimentary) ex'FinaIIy, Chronus relies on search strategyo efficiently

ample is the Windows “Help and Support Center.” Ex- . . .
. : duce the failure-inducing state change from a large se-
pert systems typically rely on a static rule database, an L
quence of historical states. In many cases, Chronus can

are therefore only effective for known configuration er- bi h allowing for di o h I
rors. Arguably, known configuration errors would be bet-L o0 onary search, allowing for diaghosis time that scales
' ' logarithmically with log length.

'tgtrerr]g:gle?nbgérg'?E,?qve;e:tztggsﬁ\ﬁlsren?szg:o% szer The output from Chronus is the time of the fault
!) fton, y grow P Xpoint. Based on this timing information (the “when”), the

static rule databases grow increasingly incomplete. I o
: . .__troubleshooter can then use OS- or application-specific
When all else fails, the last recourse is manual diag- . ; o
. tools to diagnose the cause of the failure (the “why”).

letting them reason about unexpected situations Um‘oféDne simple but useful technique is to compare the com-
9 P) lete file system state immediately before and after the

tunately, human resources are scarce and costly, and mgs-
y y ilure using an invocation of the UNIXi f f command.

tering the_ cqmplexny of today’s sqftwa_re systgms re‘pre'Figure 2 depicts the stages of a typical Chronus session.
sents a significant hurdle to effective diagnosis.
1.3 Outline

1.2 The Chronus Approach
]) In the remainder of this paper, we describe the de-
Chronus is a troubleshooting tool whose goals ar&;jgn and implementation of Chronus, and we demon-
to simplify the task of diagnosing a configuration er- gate its ability to help a troubleshooter diagnose signif
ror and to reduce the need for costly human expertis§cant configuration errors. The remainder of this paper
Rather than requiring troubleshooters to answer the dif;g organized as follows. In Section 2, we describe some
ficult question “why is the system not working,” our tool ¢ the challenges we faced and design decisions that we
instead requires them to supplseftware probgi.e., a .. made. Section 3 discusses the Chronus implementation.
script or program) that answers the simpler question “iSye evaluate Chronus in Section 4. After discussing re-

the system currently working?” Given a probe, Chronusiaied work in Section 6, we describe open problems and
searches through time for the instant that the system trafy,i,re work in Section 7. and we conclude in Section 8.
sitioned from a working to a non-working state. As

we will demonstrate, many commaon configuration errors
can be diagnosed with simple shell scripts.

Chronus relies on several componentdinde-travel In this section, we drill down into the major com-
disk[25] captures the progression of the system’s durablgonents of Chronus. In each case, we identify the major

2 Challenges and Design Tradeoffs

challenges and describe the design tradeoffs we faced. A

o Relational

2.1 Time travel database

Chronus relies on a time travel mechanism to in- o CVS
stantiate previous system states. Traditional checkpoint semantics
ing systems capture the complete state of a system, in o File system
cluding both persistent (e.g., disk contents) and tran-
sient state (e.g., memory and CPU state). This approac o Disk
recreates previous states with high fidelity, but imposes
a heavy overhead to continually flush memory state to
disk. Approaches based on incremental logging (e.g.,
Revirt [15]), reduce overhead during normal operation,

but require more time to recreate a previous system statd-igure 3:Time travel storage layer tradeoff: Chronus uses a
. . time travel disk, which achieves completeness while ftirfgi
Instead of taking full checkpoints, Chronus only

. . high-level semantics.
records updates to persistent storage. This allows for rea g

sonable performance during both normal operation anc

problem diagnosis. As we demonstrate in Section 5.1state may be corrupt, causing Chronus to discover a spu-

the overhead of our versioning storage system is primarrious error unrelated to the true cause of failure. More

ily limited to disk space (which is plentiful) rather than commonly, Chronus may discover the correct error, but

degraded performance. the granularity of a block change is too fine to make a
A drawback of disk-only state capture is that we sac-useful diagnosis. For example, configuration files can

rifice completeness: only errors that persist across sydemporarily disappear while the text editor’s “save” op-

tem restarts are recorded by the time travel layer. Noteeration is in progress. Because such inconsistencies are

however, that some configuration changes require systeishort-lived, it often suffices to “zoom out” by computing

restarts to take effect — for example, changes to sharestate changes over a slightly longer interval.

libraries or the OS kernel typically require system re- o))

boots. For this type of “delayed release” configuration2-2 Instantiating a historical state

change, the on-disk state is more meaningful than the in-

stantaneous characteristics of the running system.

v

Completeness

Another key design decision is the technique used
to instantiate previous system configurations. A sim-
21.1 Time-travel disks ple strategy would be to use application-layer restarts, in
which the user-mode processes of interest are restarted
Time-travel or versioning storage systems have beemfter each configuration change. Unfortunately, many
extensively studied. Proposed systems include versiorrelevant configuration changes require whole-system re-
ing file systems [30, 31], source code repositories [14]boots, including changes to system software (the kernel,
time-travel databases [32], and the Peabody time-travedhared libraries) or configuration options (TCP/IP pa-
disk [25]. Taken as a whole, these systems demonstrat@meters, firewall policy).
a tradeoff between completeness and high-level seman- In this work, we use a virtual machine monitor
tics (Figure 3). At one extreme, the time-travel disk of- (VMM) [13, 33, 35] to perform “virtual reboots” in soft-
fers the most completeness, in that it captures all statevare. Because VMMs emulate the hardware layer, they
changes without requiring support from operating sys-provide a more complete representation of whole-system
tems or applications. At the other extreme, relationalbehavior. As well, VM restarts offer a series of advan-
databases offers strong data consistency semantics, bisige compared to physical machine restarts. VMs can be
require applications to utilize a particular API. rebooted faster, because they avoid re-initializing phys-
For Chronus, we chose a storage system based onieal I/O devices. For Chronus, this translates into faster
time-travel disk. One of our goals ws to avoid making problem diagnosis. VMMs provide robust mechanisms
assumptions about how and where configuration errorfor terminating failed tests and reclaiming state changes,
arise. Because of its low-level interface, a time-traveland they enable debugger-like functionality, allowing the
disk capturesll local configuration changes, without re- user to inspect or modify VM state.
gard to application or OS functionality. Chronus is to There are disadvantages to using VMMs. Virtual-
some degree “future-proof,” in that it can diagnose con-ization imposes performance overhead; this can be min-
figuration errors for systems that have yet to be written. imized [4], but may still be significant in some settings.
A drawback of a time-travel disk is that it offers poor VMMs tend to reduce virtual device interfaces to the
data consistency semantics. In some cases, the on-disdwest common denominator, and thus may mask or per-

turb some configuration errors. A VMM might not ex- spurious failure true failure
pose a bleeding-edge graphics card, for example. Finally, working
a VMM-based implementation of Chronus cannot diag-

nose configuration errors within the virtualization layer time
itself, such as updates to physical device drivers.

2.3 Testing a historical state

failing

Chronus’s automated diagnosis capability relies on
a user-supplied softwangrobeto test whether the sys- Figure 4: A spurious search result: Chronus may detect an
tem is functioning correctly. Testing a system is oftenerror that is unrelated to the current cause of failure.
easier than performing a full failure diagnosis. Never-

theless, testing itself can be a non-trivial task, and probe owever in some cases. a system may nmalei-

authorship represents a hurdle to utilizing Chronus. 56 transitions from a working to a non-working state, as
In our current prototype, probes are written on theshown in Figure 4. Most of these additional state transi-

fly in response to specific failure conditions. We assumgons arespurious in that they are not related to the true
that troubleshooters have knowledge of shell scripts andg,;rce of the current configuration error. For example,

basic command line tools. With this, many configurationpecause software is typically unavailable during a soft-
errors are testa_ble, including application crashes, a WeQIare upgrade, Chronus may mistakenly implicate a past
browser that fails to load pages, or a remote executioqpgrade that is unrelated to the current configuration er-
service that refuses access to valid clients. ~ror. Other sources of spurious errors include configura-
For errors that are beyond the scope of shell scriptsyion changes that have already been fixed, and short-term
Chronus supports manual testingnode, in which the jhconsistencies due to corrupt file system state.
human troubleshooter performs some or all of t.he testing A simple strategy for dealing with multiple failures
process by hand. We have found manual testing particyg simply to run Chronus multiple times. By choosing
ularly useful to evaluate errors that involve sequences Ofjifierent time ranges for each search, Chronus can be
GUI actions or that require the user to interpret a visualyade to explore different regions of the system time-
image. Manual testing can be used with more configuraine This is philosophically similar to simulated anneal-
tion errors than probes, but it imposes a heavier burdening search, which uses random choices to escape local
In the future, we plan to explore techniques to sim-minimums [29]. The troubleshooter can then analyze all
plify probe creation. One option is to create static li- returned state transitions to determine which one is the
braries of probes, which could be used to test generiqke|y source of failure.
forms of application behavior. For example, a generic A alternate strategy is to construct probes that are
web server probe might attempt to download the systeness |ikely to exhibit spurious errors. One useful strategy
home page. For graphical applications, Chronus coulgs to constructerror-directed probes, which search for
leverage point-and-click tools for capturing and replay-changes in the system’s observable symptoms, regardless
ing sequences of GUI actions [20]. of whether the behavior is “correct.” The key insight is
Regardless of testing strategy, there are some conhat different failure causes often produce different fail
figuration errors that Chronus cannot diagnose. Non'ure modes. For examp|e, one error m|ght cause an app“_
deterministic errors (or Heisenbugs [17]) that cannot be&:ation to hang, whereas another produces an identifiable
reliably reproduced are beyond the scope of our tool. error messages. Therefore, probes that search for a par-
ticular symptom are less likely to reveal spurious errors
unrelated to the true cause of failure. We explore such a

Given a probe, a naive approach to finding a faultcomplex error scenario in Section 4.3.

point is to sequentially examine every historical state ofy g Going from “when” to “why”
the system. Of course, this is impractical, as it would re-
quire instantiating, booting, and testing a virtual maehin The output from Chronus is the instant in time the
for each disk block write that occurred in the past. transition to a failing state occurred. Using this, the trou

A more intelligent approach is to use a binary searchbleshooter can determine the state change that induced
through time. If the troubleshooter can identify a past in-the failure. In many cases, this information alone is suf-
stance in time at which the system worked, and assumingicient to diagnose the configuration error.
there is a single transition from that working state to the In other cases, however, the individual state change
current non-working state (as in Figure 1), then binaryrevealed by Chronus may be insufficient to diagnose the
search will find the fault point in logarithmic time. error. For binary configuration data, there is no univer-

2.4 Searching over time

sal differencing mechanism that reveals the “meaning” of Parent VM)
a state change. Another limitation is that Chronus can- Child VM

i ; Chronus ;
not uncover the broader context in which a state change Search Engine[L TDisK /

was carried out. For example, Chronus cannot associate

a modification to a dynamic library with the act of in- [METEE0 : probe
stalhng a particular application. In these cases, remgrsi Guest OS I Guest OS
the single state change revealed by Chronus may be in- !

.. I |
sufficient to re.medy th(? problem. . uDenali VMM L e

The solution to this “semantic gap” [11] between Disk interposition
hardware-level events and higher-level semantics lies in

combining Chronus with other debugging tools. The

UNIX di f f, which reveals changes to ASCII files, is Figure 5: Chronus software architecture: During normal

one such tool, but others may be more appropriate in cefoperation, the parent VM records the child’s disk writes to a

tain contexts. For example, the Windows regdiff tool re- ime-travel disk (TTDisk). During debugging, a softwarelpe

veals changes between two snapshots of the Windows used to determlrje the correctness of a given state. Cﬁrpnu

Reqistrv. The Backtracker tool 221 performs root-causeuses the probe to |mplemept a gearch strategy (such as binary
€gis _y ” [22] p - -search) across the system time-line.

analysis by mapping from a low-level state event to high-

level user action. Another approach is to leverage exist-

ing system logs. Currently, the sheer volume of thislog- Chronus makes heavy use of thaDenali

ging makes it difficult to use, but the timing information VMM [35]. Presently, uDenali (and hence Chronus)

provided by Chronus can be used to quickly zoom-in ononly supports the NetBSD guest OfDenali VMM

a small cross-section of system log entries. allows a “parent” virtual machine to exert control over
its “child” virtual machines. In addition to being able
2.6 Summary to create, destroy, and boot child VMs, the parent

can interpose on and respond to its children’s virtual

The Chronus tool maps from a user-provided soft-nardware device events. For example, if a child issues
ware probe to the instant the system transitioned to a faily virtual disk write, that event is passed to the parent
ing state. This information, in conjunction with higher- yja the “lib_interpose” interposition library. In Chronus,
level analysis tools likdi f f , allows a troubleshooterto the child executes normal user programs, while the
diagnose the cause of failure. parent implements the Chronus debugging functionality.

The design of Chronus was guided by a few ba-Chronus itself runs as a normal user process with
sic goals. Unlike programming language debuggerspermission to access the interposition and control APIs
Chronus strives for low overhead during normal oper-described by Whitaker et al. [35]
ation. To achieve this, our snapshot mechanism only chronus exposes a command-line interface to the
captures storage updates rather than complete memogy,pleshooter. Theear ch command initiates a di-
checkpoints. Chronus also strives to capture the mosjgnosis session. The command’s arguments include the
possible configuration errors. We achieve this by usmame of a time-travel disk, the beginning and end of a
ing a time-travel disk (which captured! persistent state search range (expressed as log indexes), and a probe con-
changes) and virtual machine monitors (which repro<figyration file, which defines the executable probe rou-
duce the entire system boot sequence). Finally, Chronugne and other probe meta-data. If the search range limits
strives for fast problem diagnosis. Binary search pro-are omitted, Chronus defaults to the beginning and end of
vides for diagnosis time that scales logarithmically with the |og. After Chronus has identified the instant of fail-
log size. Also, our use of virtual machines enables indi-yre theat t ach command is used to mount the child
vidual tests to execute significantly faster than would begisk into the parent’s local file system before and after

possible on physical hardware. the failure. The troubleshooter can then use commands
such agli f f to extract meaningful state changes. In ad-
3 Implementation dition to thesear ch andat t ach commands, Chronus

provides a set of command line utilities for interacting
In this section, we describe our prototype implemen-with time-travel disks. See Table 1 for details.
tation of Chronus. Our prototype consists of roughly Beyond theuDenali VMM, the major components
2600 commented lines of C code, approximately half ofof Chronus’s implementation are a time-travel disk for
which is dedicated to the time-travel disk. The other halfrecreating previous states, testing infrastructure fat-ev
comprises the search, testing, and diagnosis functionaltating individual states, and binary search for efficiently
ity. Figure 5 shows a high-level view of Chronus. localizing the failure across many previous states.

Category | Command Description
search binary search over a time range
Automatic I)
scan linear search over a time range
search
test test a single time step
load load a TTDisk at one or more time steps
mount loaded disk(s) into the local file
Manual attach system
search boot boot a virtual machine from a loaded disk
kill kill a virtual machine
make create a new TTDisk
Administration query query meta-data about a TTDisk
flush flush and reclaim a portion of the log

Table 1:Chronus command-line utilities: Automatic com-
mands perform time-travel searches given a search probe. Ma
ual commands allow the troubleshooter to instantiate a-time
travel disk at some point in the past. Administrative comdsan
perform TTDisk creation and maintenance.

3.1 Time-travel Disk

The Chronus time-travel disk (@fT Disk) maintains
a log of the child VM’s disk writes. Th&@TDisk imple-
ments theuDenali disk interface [35], a C API that al-

lows the programmer to implement custom functionality

for disk reads and writes. THETDisk functionality is

hidden behind the hardware disk interface, so the child’s

guest OS requires no modifications.

TheTTDisk uses two helper disks to maintain state.
A checkpoint dislcontains the initial disk contents. All
disk writes are recorded tolag disk The implementa-
tion of both disks is abstracted away behind tizenali

NetBSD, the correct choice for this parameter is not the
file system block size, but rather the file system frag-
ment size. BSD systems typically use a large block size
and rely on smaller fragments to efficiently store small
files [23]. By choosing th& TDisk block size to match
the file system fragment size, we avoid degrading perfor-
mance for small writes.

A general problem for log-structured storage sys-
tems is maintaining consistency without synchronously
writing log meta-data. The design of tH@Disk avoids
synchronous meta-data writes by appendingaovery
sectorto each block written to the log. The recovery
sector contains two fields: the virtual block index that
the log write corresponds to, and a 64-bit counter, which
is used to indicate the last log entry. During recovery,
we roll forward the log starting from the last meta-data
checkpoint until we reach a recovery sector that does not
contain a valid counter.

The implementation of TDisk crash recovery is not
complete in our current prototype. We have implemented
a version ofT TDisk that writes recovery sectors, but this
version exhibits poor performance because;ibenali
disk interface currently supports only 4 KB block opera-
tions (as opposed to 512 byte sector operations).

3.2 Testing infrastructure

Chronus relies on user-supplied software probes to
indicate whether a given time step corresponds to a “cor-
rect” system state. Given such a probe, the testing infras-
tructure automates the task of instantiating and evaluat-
ing a previous system state. After the test has completed,
any state changes made during the test are discarded.

disk interface. In our current implementation, check- Chronus supports two styles of software probas.
point/log disks can be backed by either physical disk parternal probes run inside the child virtual machine being
titions or by files in the parent's local file system. We tested Externalprobes run on the parent virtual machine
disable write caching to ensure that disk writes are synconducting the test. Generally, external probes are used
chronously flushed to disk. Periodically, the log can befor diagnosing server failures. Running a probe inter-
trimmed by flushing old entries back to the checkpoint. nally on the server could yield incorrect results, since the
In addition to the data disks, tHETDisk requires |ocal loopback network device is configured separately
a meta-dataregion to map a given disk block to a lo- from the external interface. Internal probes are used for
cation in either the checkpoint or the log. Th&Disk all other types of applications, including network clients
meta-data is similar to the checkpoint region of the log-and non-networked applications.
structured file system [28], except that it presera#s The steps for executing a probe differ for internal
previous disk writes, not merely those that are still active yersus external probes. In both cases, the first step is to
For eachT TDisk block, the meta-data region maintains a wrap the time-travel disk with a copy-on-write (COW)
sorted list of the log writes that modified the given block. disk. This provides a convenient mechanism for discard-
The meta-data region is backed by a file in the parent'sng state changes made during probe execution. For in-
local file system. As with the log-structured file system, ternal probes, the parent virtual machine then executes
we alternate between two meta-data regions (files) to ena pre-processingoutine, which mounts the COW disk
sure consistency in the face of failure [28]. into the parent’s file system, and configures the child’s
file system to execute the probe routine on boot. By con-
vention, the probe output is stored in a particular file for
The TTDisk uses a block size larger than the disk later extraction. Once the probe has executed, the child
sector size to reduce the amount of meta-data. Fo¥M performs a halt operation, causing the parent VM to

3.1.1 Design details

. | i
terminate it. Alternately, a timeout mechanism is used” /P! "/ sh

for tests that hang or stall. After termination, the parentrewpr LE=. / QxB50. t np
VM once again mounts the COW disk, and executes am -f ${ TEMPFI LE}
post-processingoutine to extract the probe result.
ssh root @O0. 19. 13. 17 ’'date’ > ${ TEMPFI LE}

The steps for executing external probes are simi-
lar, but simpler. The pre-processing and post-processingf (test -s ${TEMPFILE})
phases are omitted. The probe runs in the parent vir- then echo *SSHD Up"
tual machinewnhile the child virtual machine is running. f: se echo " SSHD DO
Once the probe terminates or times out, the child VM is
garbage collected. exit 0

] Figure 6:sshd probe: This is the complete version of a shell
3.3 Binary search script that diagnosed a configuration fault in the ssh daemon

. . . >>> search netbsd andrew. tine
Chronus uses binary search to quickly find the faultygy. ssip UP 5267: SSHD DOWN 2633: SSHD UP

point along the system time-line. We assume the systermgso: SSHD UP 4608: SSHD UP 4937: SSHD DOMN
exhibits a transition from a working to a non-working 4;721 ggHD up 43221 ggHD % 4352351 ggHD %
o E ; 4916: SSHD UP 4926: SSHD 4921: SSHD

s‘Fate, as shown in Flgur_e 1. Chronus begms by run | ooHD UP 4919 SSHD UP 4920, SSHD DO/W
ning the probe at the limits of the user-provided search
range. Assuming the limits exhibit different probe re-# attach ttdisk before and after fault
sults, Chronus then tests the midpoint; if the midpoint’s>>> attach andrew.tinme 4919 4920
outputis the same as the_ endpomts, Chronus r’ecurswelx use recursive diff to find what changed
tests the earlier half qf time line. If the prpbes OUtpUt 5> diff -r /childl /child2
differs from the endpoint’s, Chronus recursively tests thesi nary file /etc/ssh/ssh_host_key differs
later half of the time line. In some cases, a probe may
fail to execute or may produce non-binary results. ToFigure 7: Diagnosing the sshd _failure: This terminal log
handle this, Chronus considers all results that differ fromshows Chronus’s output for a binary search using the sshd
the endpoint to be the same. This tends to work becaugdoPe. We have added comments to the raw output, preceded
probe failures often coincide with a non-working system,by #. After pinpointing the failure instant, we attach ttie-

d Vi dinthel ition f travel disk before and after the fault, and use recursivietalif
and we are genera ymtgreste in the last transition fromyicit the failure cause.
a working to a non-working state.

Chronus requires the troubleshooter to specify a*-1 Randomly injected failures

search range whose limits exhibit different probe results. o

Because the troubleshooter might not know an appropri- Ve wrote a fault-injection tool calleétc-smasher

ate range a priori, Chronus provides ast command, that creates typ_0§ in key s_ystem configuration files. Such

which allows the troubleshooter to guess-and-check in€/rors can be difficult to diagnose because they often do

dividual time steps. In our experience, this mechanisni©t take effect until after the machine is repooted. Once

has proven sufficient to quickly discover a valid searchP€r sécondetc-smashechooses a random file from the

range for most failure cases. /etc directory (which contains system and application
configuration files). 90% of the timetc-smashewrites
back the file without modifying it; this creates “back-

4 Debugging Experience ground noise” in the system. For the remaining 10%, the
program changes the file in a small way, by either re-

In this section, we describe our experience usingmovmg’ adding, or modifying a character. To generate a

) . __~sample run, we ran the program for several minutes, and
the Chronus tool. For each experiment, we used blnar% : :
. o . bserved the most obvious failure symptom.
search to locate the failure in time and the UNIX util- The f ¢ thi induced the fol
ity to extract the state change. In some cases, it was ne¢- € w;s_t two uns o t _'S program induced the fol-
essary to compute the state difference over a time ranJQW'ng configuration errors:

larger than a single block. As a resuliff sometimes de- configuration Fault #1: sshd failure. The child VM’s

tects spurious changes such as changes to emacs backiq gaemon does not respond to remote login requests.
files or modifications to the system lost+found directory.

In some cases, we have sanitized the results for brevityConfiguration Fault #2: boot failure. The child VM
but we never removed more than eight lines of outputdoes not boot correctly. Instead of a login prompt, the
All probes are written as UNIX shell scripts. user is asked to enter a shell name.

Probe In Table 2, we indicate which Mozilla errors could

#!/ bi n/ sh . . .

be diagnosed with Chronus. To qualify for Chronus sup-
rm-f / TTOUTPUT port, an error must be both easily reproduciuhel result
echo * SUCCESS' > / TTQUTPUT from a state change from Mozilla’s default configuration.

Overall, 15 of the 24 errors (63%) in the Mozilla FAQ

Consol e out put) T
satisfy these criteria.

% search netbsd andrew2.tine We further break down the errors captured by
Chronus according to the best available testing strategy.
0000: SUCCESS 1607: FAILURE 0803: SUCCESS .)
1205 SUCCESS 1406 SUCCESS 1506. FAl LURE For 7 error cases, it would be possible to construct a
1456: FAILURE 1431: FAILURE 1418: FAI LURE shell-scriptprobeto elicit the failure condition. From
1412: FAILURE 1409: FAILURE 1407: SUCCESS a script, it is possible to direct Mozilla to a specific page
1408 FAI LURE and extract the returned result. Also, Mozilla supports
% at t ach andrew?. time 1407 1408 a “ping” command, which is useful for determining if
%diff -r --exclude **dev*’ /childl /child2 the application has crashed or hung. The 8 remaining er-

. _ _ ror cases requirmanualcontrol over some or all of the
‘;' le: /CE'O'n?ig;{et E(JW/ boot conf . sh differs testing process; typically, these errors involve GUI inter
> conf =${ $DUMWY} actions that are difficult to script. In the future, it may
be possible to automate more diagnoses using graphical

Figure 8:Boot failure probe and console output:The probe capture/replay tools [20].

writes a string to a file, but only if the boot process comdete The “connection refused” error requires further ex-
successfully. Using this probe, Chronus diagnosed therail - planation. The error arises when a local firewall prevents
as resulting from a change to the file bootconf.sh. the Mozilla executable from establishing out-bound con-

To di th hd fail ¢ be th nections. This error has a subtle dependence on the or-
0 diagnose the ssha failure, we wrote a probe er that the firewall and Mozilla are installed. If Mozilla
attempts to login via ssh and execute the UNlxte

- S . is installed first, then the installation of the firewall will
command.. Thls probe (shown in Figure 6)_ IS -an eXter'trigger a failure, which Chronus can detect. If the fire-
nal probe: it runs on the parent VM. Notice that the wall is installed first, then Mozilla will never work cor-
probe only deals W't.h the obs_erva_ble symptoms of SShrectly. Nevertheless, it is still possible to diagnose this
and not with any of its potential failure causes (TCP/IPerror with Chronus by using a probe that fisstalls
mis-configurations, authentication failure, failure oéth ozilla, and then tests the application
ssh daemon itself, etc.) Figure 7 shows the output OM Be;ylond studying applicability 'we also used
running a Chronus binary search for this error. The sslbhr '

.) _ onus to diagnose several of the Mozilla errors. For
fault was introduced between disk block writes 4919 and . . . o
o e each trial, we synthetically injected the error condition
4920 within the log. The output fromiff indicates the y yini

ited f h in thsh_host_kev fi based on the description in the Mozilla FAQ. We then
error resulted from a change in tasn_nost.key file. wrote a probe to diagnose the behavior, and ran Chronus

_ Todiagnose the boot failure, we crafted a probe thay, hinngint the offending state transition. We now de-
yvntes a strmg !nto a flle_ (see Figure 8). The probe rUNSqcribe two such trials in more depth.
internally (within the child VM), but only executesf-
ter the boot sequence has completed. As a result, thé.2.1 JavaScript error
existence of the fildTTOUTPUT indicates a successful o .]
trial. If the boot process hangs, Chronus eventually ter- ~ JavasScript is used by some web sites to provide en-
minates the virtual machine, and the trial constitutes d1anced functionality beyond static content. JavaScript
failure. As shown in Figure 8, Chronus correctly iden- IS @S0 & security concern, and Mozilla allows users to
tified the source of the error as a small typo in the file limit the functionality of scripts, or to disable JavaScrip

Jetc/re.d/bootconf.sh. completely. In some cases, JavaScript-enabled sites may
demonstrate strange behavior if JavaScript is not en-
4.2 Debugging Mozilla errors abled. For example, the user may be unable to follow

hyperlinks for a particular page [26].

To understand Chronus’s behavior for graphical ap- To model this error, we installed Mozilla in a virtual
plications, we analyzed a list of frequently asked quesinachine and disabled JavaScript through the preferences
tions for the Mozilla Web browser [26]. The questions menu. To test for the error, we wrote a probe that directs
fall into two categories: 1) customization questions suchMozilla to fetch a web page that requires JavaScript sup-
as “how can | make Mozilla my default browser?” and port. The probe asks the user whether the resulting dis-
2) errors/problems. The latter category comprises 24 ouplay output is correct. The probe and console output are
of a total of 53 questions. shown in Figure 9.

Symptom Cause Chronus | Testing Comment
Support? | Strategy

File space exhausted error Bug no Broken by default
Can't save password Server policy no Remote policy
Periodic crashes JVM bugs no Not easily reproducible
Links do not work Disabled javascript yes manual Must test GUI output
Can't save preferences Broken file path yes manual Requires GUI action
Connection refused Firewall yes probe Requires install probe
Connection refused Proxy settings no Broken by default
Application does not start DLL collision yes probe
Can't install extensions Installations are disabled yes manual Requires GUI action
Periodicly jarbled display Bug no Not easily reproducible
Installation failure Broken install script no Broken by default
Scroll whell doesn't work Bug no Broken by default
Deterministic crash Version clash yes probe
User prompted for profile Profile file is locked yes probe
Copious error messages Corrupted config file yes probe
Saved files have .mp3 extension Bad MIME type config yes manual Requires GUI action
Random freezes Corrupted config file yes manual Not easily reproducible
Menu options unavailable Bug no Broken by default
Can't open local files Bug no Broken by default
Redirection limit exceeded Cookies disabled yes probe
Lost profile information OS upgrade yes manual Must test GUI output
Back/forward buttons grayed out History size set to zero yes manual Must test GUI output
Image links do not load HTTP pipelining enabled yes manual Must test GUI output
Home page not displayed Adware yes probe

Table 2:The applicability of Chronus for Mozilla errors: 15 of these 24 errors could be captured by Chronus. This nteahs
they are both repeatable and result from a state change. flthése cases, the testing could be conducted automatigiaén a
shell-script probe. For the other 8 cases, the testing psa@gjuires assistance from a human operator, either tgoiaté Mozilla
or interpret its visual output.

user than the overall Web servemuexec is a common

source of configuration errors, especially when scripts
Mozilla allows developers to prOVide new function- require Specia| priv”eges [7] In our examp|e’ the CGI

allty via an extenSib“ity API. These extensions are notscript must connect to a back end database, which on|y

well-isolated, and a misbehaved extension can cause thgsrmits access from the useww. As a result, Web re-
overall browser to malfunction. To model this error, we quests for this Script return an HTTP error message.

installed a set of extensions from the Web. After quit- In addition to thesuexec error, we performed two
ting and restarting the program, we dlscovered. that one .inns that affect the Web server's functionality. Near
of these extensions had introduced a malfunction, suclq start of the trace. we changed the server's IP ad-
that Mozilla would hang before displaying a page. dress. Because DNS mappings are not captured in our
To diagnose this error, we wrote a probe thatyime travel layer, any attempt to connect to the server
uses the Mozilla “ping” command to indicate whether hetore the IP address change will not succeed. Subse-
a_prewously-launched browser is func_t.|0n|ng correctly.quenﬂy' we upgraded the version of the Apache running
Figure 10 shows the outputof the f f utility. Although o, the server. This new build was necessary to support
more verbose than previous examples, the state changfesyexec command. During the installation of the up-
reveals that the “StockTicker” extension caused MOZ'”agrade the Web server is unavailable to Chronus probes.

to malfunction. There are two strategies one could take in analyz-

ing this failure. First, one could write uccess-directed

probe, which tests whether the system successfully han-
As discussed in Section 2.4, binary search can faidles requests. We wrote such a probe by testing for a suc-

in the presence of multiple faults in a single time-line. cessful HTTP response. The drawback of such a probe is

To explore this phenomenon, we introduced a sequencéat it may detecanytransition from a working to a fail-

of configuration events inside an Apache web servering state, as shown in Figure 11a. In the worst case, the

as shown in Figure 11a. The “true failure” is a mis- user must decipher two spurious results before revealing

configuration of the Apachguexec command, which the true source of the error.

allows an administrator to run CGI scripts as a different ~ An alternate approach is to constructfailure-

4.2.2 A misbehaved extension

4.3 A complex Apache error

Probe >>> diff -r /childl /child2

#!/bin/sh file /root/.nozillal/default/zclirwbu.slt/chronme
/chrone.rdf differs:

ssh -X root @0.19.13.79 '"nozilla $WEBSITE &
> <RDF: Descri ption about="urn: nozi |l | a: package

echo -n " RESULT: ’ :stockticker”
> c:baseURL="jar:file:///root/.mozilla/default
read result /zclirwbu. slt

echo $result

\%

/ chrone/ stockticker.jar!/content/"

c:locType="profile"

c:aut hor="Jerenmy GIIick"

c:authorURL="http://jgillick.nettripper.com"

c:description="Shows your favorite stocks in a

custom zed ticker."

c: di spl ayName="St ockTi cker 0.4.2"

c: extension="true"

c: nane="stockticker"

c:settingsURL="chrone://stockticker/content
options.xul" />

Consol e out put

169904: RESULT: GOOD 222044: RESULT: BAD
195974: RESULT: BAD 182939: RESULT: BAD
176421: RESULT: BAD 173162: RESULT: GOCD
174791: RESULT: BAD 173976: RESULT: BAD
173569: RESULT: BAD 173365: RESULT: GOCD
173467: RESULT: BAD 173416: RESULT: GOOD
173441: RESULT: GOOD 173454: RESULT: BAD
173447: RESULT: GOOD 173450: RESULT: GOOD
173452: RESULT: BAD 173451: RESULT: BAD

~V VVVVVYVYVYV

Figure 10:Console output for a buggy Mozilla extension

ss> diff -1 /childl /child2 Chronus traced the failure to the “StockTicker” extension.

L: Lfee/r;fm”' mozi |1 aldefaul t/zcluskp2. slt/prefs.js We used reverse debugging to elicit the correct con-
> user_pref ("browser. downl oad. dir", "/root"): figuration for the NetBSD Network Time Protocol (NTP)
> user_pref ("browser. startup. honepage", daemon. Initially, the system’s NTP configuration was
"http://ww.nozilla. org/start/"); incorrect, causing the system’s time to be set to an in-

> user_pref("javascript.enabled”, false); correct value. Although we fixed the problem in one

Figure 9: Mozilla JavaScript probe and console output: ![Dhart:)culard\./l\lil,. the Ch"fll_ngle W?Stﬂotf.propagatetd back tt)o
This probe, combined with user input, diagnosed a Mozilha re € base diskimage. 1o locate . € Tix, we wro Ff'.a probe
dering problem related to JavaScript. The probe runs eallgrn that searches for unusual behavior fromiake utility;

on the parent VM, so that X-windows ssh forwarding is set upmake relies on a correct clock, and may force unneces-

properly. Spurious information exists because Mozillavato ~ sary recompilation when the clock is mis-configured.
cally saves all preference changes made during a usersessio

directedprobe. Instead of looking for successful com- 5 Quantitative Evaluation

pletion of a request, a failure-directed probe searches for | this section, we provide quantitative measure-
the precise error behavior exhibited by the applicationments of Chronus. We analyze time-travel disk perfor-
In this example, thsuexec failure returned a distinc- mance, |Og growth, and debugg|ng execution time. All
tive error message. Because different errors often exhibilests were run on a uniprocessor 3.2GHz Pentium 4 with
different symptoms, a failure directed probe can resultyyperthreading disabled. The test machine had 2 GB of
in fewer state transitions over an equivalent system timeraM, but the virtual machines (both the parent and the
line (see Figure 11b). Using a failure-directed probe, wechijld) were configured to use at most 512 MB. The ma-
discovered the source of teiexec failure using asin- ¢hine contained a single 80 GB, 7200 RPM Maxtor Di-
gle Chronus search invocation. amondMax Plus IDE drive, and an Intel PRO/1000 PCI
gigabit Ethernet card.
All of the following experiments were run without

Although we intended Chronus as a tool for finding appending recovery sectors to log writes. Therefore, the
configuration bugs, an alternate use is to search for cof€Sults model a system that uses some other mechanism
figurationfixes This is especially useful in cases when fOr insuring meta-data consistency (e.g., non-volatile
the “fix” was applied serendipitously. For example, ap- RAM). An |mpIementaF|on with recovery sectors would
plication X might install a dynamic library that fortu- "€duire 12.5% more disk space (one 512 byte recovery
itously allows application Y to work correctly. In prac- S€Ctor is appended to each 4 KB block). The perfor-
tice, the issue is even more subtle, because the order fjance overhead would likely be similar.
whic.h pacl_<ages are installed can affect the system'sfina} 1 Runtime Overhead
configuration [19]. Given a failing machine and a cor-
rect machine, an administrator can use Chronus to find To evaluate time-travel disk performance, we ran the
the fix from the correct machine, and then apply the fixset of workloads shown in Table 3. We generated the
to the failing machine. sequential read and write workloads using the UMK

4.4 Reverse debugging

i true failure Workload Native disk Time-travel disk
working
i Sequential write 32.6 MB/sec 31.7 MB/sec
ime
Sequential read 33.1 MB/sec 32.7 MB/sec
Sequential 'read 33.1 MB/sec 15.3 MB/sec
failing (adversarial)
- 5Id_||_3 - - ;p_a;h; - suexec Untar 123.4 sec 125.7 sec
address upgrade error Grep 221 sec 253 sec
a) Success-directed probe timeline
true failure Table 3:Time-travel disk performance: The time-travel disk
is competitive with the native disk for all workloads, ext
no
message _ the “adversarial” workload designed to exhibit poor logain
time the time-travel log.
error
message) File System Log growth
suexec Operation Growth Log growth (compressed)
error
b) Failure-directed probe timeline copy mozilla.tar 214.8 MB 215.0 MB 29.6 MB
. . untar mozilla.tar 300.4 MB 1905 MB 36.1 MB
Figure 11: Apache suexec error, as seen by two different
probes: A success-directed probe searches for transitions from [remove mozilla/ | (-300.4 MB) 1432 MB 5.71 MB

a working to a failing state. This may return spurious result

when the system contains multiple such transitions. Afallu Table 4: Log inflation: Operations that greatly modify the
directed probe searches for changes in the specific errqgr-sym file system directory structure generate a large number of
tom exhibited by the application. For this example, a faitur |og writes. Fortunately, the writes are highly redundand an
directed probe revealed the configuration error with a singl amenable to compression.

Chronus invocation.

) _ One remaining concern igg inflation which arises
command using 32 KB block increments. We also ranom file system meta-data operations. Applications that
an “adversarial” sequential read, in which we read OVelheavily modify the directory structure can generate ex-
a disk region that was previously written in reverse order;gssive log growth. Table 4 shows the amount of log
in 32 KB increments. Finally, we ran untar and grep overgrowth required for various operations on the Mozilla 1.6
t_he M02|Ila 1.6_ source tree. Mozilla 1.6 cqntams 35,1864 chive. As expected, simply copying the tar file does not
files in 2,_454 (_1|rector|es, a_nd has a total size of 300 MB.qgenerate undue log inflation. However, untaring Mozilla
The “native disk” data series shows the performance Ogauses log growth that is more than six times larger than
a child VM using a physical disk partition. The time- the growth in the underlying file system. Even worse,
travel disk log was backed by a physical partition. No deleting the Mozilla directory tree (with rm -Rf) gener-
disk operations were processed by the checkpoint diskytes 1432 MB of log data! The source of this log growth
and swapping was disabled for these tests. is repeated, synchronous updates to file system structures

For most workloads, the performance of the time-gych as free block lists, inodes, and directory contents.
travel disk is competitive with the native disk. The one We have considered two possibilities for combating
exception is the adversarial sequential read Workload|og inflation. One possibility is compression. The con-
Because blocks are written out in reverse log order, thisents of meta-data operations are highly redundant, and
style of workload generates poor performance from anerefore would exhibit significant size reductions (as
log-structured storage layer. Most files are processed S&hown in Figure 4). A second possibility is to temporar-
quentially [2], suggesting this style of workload occurs jly deactivate versioning — for example, using heuris-
rarely in practice. tics similar to those employed by the Elephant file sys-
tem [30]. We have not yet experimented with or imple-
mented either of these strategies.

. Chropus relies on excess .storage capacity to main5.3 Debug execution time
tain the time-travel log. This is reasonable, given that
storage capacity is growing at an annual rate of 60% [18] Because Chronus uses binary search, it can discover
and shows no signs of abating. Other researchers havanfiguration errors in a logarithmic number of steps.
noted that users can already go years without reclaimingrigure 12 shows Chronus’s convergence time for logs of
storage [16]. various sizes. The test uses an internal probe that tests

5.2 Measuring log inflation

to extract semantically relevant debugging information
from the child virtual machine. For example, Chronus
might discover that an application failure was caused by
an update to a particular dynamic library. Given this
starting point, a Backtracker-like tool could determine
that the library change was caused by the installation of
an unrelated application.

Several research efforts have extended programming

2 ——— — — — — language debuggers with the ability to perform time-
T travel or backwards execution [6]. These systems tend
o ‘ ‘ ‘ to have high overhead or long replay times, depending

0 2000 2000 6000 8000 on the extent to which they rely on checkpointing or log-
Log length (MB) ging. In addition, these systems are tied to a particular

language or runtime environment. Chronus detects con-
Figure 12:Debug execution time:The runtime grows loga- figuration errors that span applications and the OS, and it
rithmically with log size. does so with tolerable overhead by recording only those
changes that reach stable storage.
for the existence of a particular file. Chronus currently ~ Delta-debugging [36] applies search techniques to
requires roughly 20 seconds to conduct a single probet.he problem of localizing source code edits that induced
More than half this time is devoted to file system consis-2 failure. Delta-debugging does not assume changes

tency checkfsck) operations, which we must do twice '€ ordered, and much of the system’s complexity de-
for each probe — once before installing the probe, andV€S from having to prune an exponentially large search

once to extract the result. Moving to a journaling file SPace. The challenges for Chronus relate to capturing

system would substantially reduce this overhead. and replaying complete system states using time-travel
disks and virtual machines.

6 Related Work The _STRIDER [34] project uses pe_riodic_snapshots
of the Windows registry to reveal configuration errors.

We now discuss related work in problem diagnosisUnlike Chronus, STRIDER monitorssingle execution
and resolution. We first discuss history-based resolutio®f a failing program, during which it records the registry

techniques, and then we discuss other techniques. keys that are accessed by the faulty process. STRIDER
. . requires registry-specific heuristics to prune the search
6.1 History-based problem resolution space: for example, registry keys that differ across ma-

Researchers have proposed versioning storage Syg_hines_are_z less likely to be_z at fault. STRIDER does _not
tems at various levels of abstraction [25, 30, 31, 32, 14]Qetect indirect dependencies that result from interastion

In some cases, recovery from configuration errors had/ith helper processes or the operating system. For ex-
been cited as a driving application. The VMWare vir- ample, STRIDER cannot reveal errors related to TCP/IP

tual machine monitor [33] also supports checkpointingP@rameters or firewall policy.

to enable safe recovery. Unlik_e Chronus, these systeméz Other problem resolution techniques

do not perform failure diagnosis. As a result, the user is

forced to undaall state changes that occurred after the A direct strategy for automated debugging is to con-

error. Chronus helps to reveal the specific failure causestruct a software agent that embodies the knowledge of a

enabling recovery with minimal lost state. human expert [3]. The limitation of such systems is that
The Operator Undo work [8] attempts to recover lostthey are only as good as their initial diagnosis heuristics.

state by invoking an application-specific replay proce-Complex systems generate unexpected errors. Chronus

dure. In a similar vein, Windows XP restore [24] allows can capture these errors by operating beneath the layer

developers to exert some control over which state is in-of operating system and application semantics.

cluded in state snapshots. Both of these approaches, be- The No-Futz [21] computing initiative advocates a

ing application specific, are less general than Chronusprincipled approach to maintaining configuration state.

Also, these techniques have side effects, which can furFor example, the authors advocate making individual

ther corrupt system state. For example, Windows Restoreonfiguration parameters orthogonal to limit the effect

may inadvertently re-introduce a virus into the system. of unintended side effects. While this is a worthwhile
The Backtracker tool [22] maintains an operating goal, the tight integration of today’s application and

system causal history log. Such a tool could address ongystem functionality suggests that debugging techniques

of Chronus’s current shortcomings, which is its inability will still be necessary when inevitable failures occur.

Redstone et al. proposed a model of automated de8 Conclusions

bugging that extracts relevant system state and symptoms .

to serve as a query against a database of known prob- Software systems often break. When they do, di-
lems [27]. A challenge for such a system is constructing@9n0sing the cause of failure can be difficult, especially
a database and query format that yield meaningful re!hen the application depends on a wide range of system-
sults. Chronus avoids using databases by directly “queryl-evel and user-level functionality. Existing automated ap
ing” the system state at a previous instant in time. TheProaches based on expert systems can only handle er-
results returned by our system may be more relevant bg© cases that are known in advance. Human experts

cause they pertain exclusively to the system under conc@n leverage intuition to solve unforeseen problems, but
sideration. manual diagnosis requires significant expertise, which

Several recent projects have investigated path-basddiimately translates into substantial cost.
debugging of distributed systems [10, 1]. These systems 1hiS paper has described Chronus, a tool for au-

log the interactions between components or nodes of £Mating the diagnosis of configuration errors caused by

distributed system. By applying statistical techniques to? state change. Chronus represents a novel synthesis of

these traces, it is possible to extract some informatiorfXiSting techniques: versioning storage systems, virtual

of interest, e.g., localizing performance problems or denachine monitors, testing, and search. Chronus reduces

tecting an incipient system failure. These systems detl€ burden on human experts from complete diagnosis

pend on the ability to extract large volumes of trace datd WY IS the system not W‘?rk';‘,f-:]") to testing for correct-
showing the integration between distributed componentd?€SS (i the system working?”). Our experience to date

Chronus is useful in situations where these assumptiondu99ests that Chronus is a valuable tool for a significant
are not satisfied, e.g., desktop personal computers. ¢lass of configuration errors.

7 Future Work 9 Acknowledgments

We thank our shepherd, Timothy Roscoe, for his

b ded i . uidance, and Ed Lazowska, Neil Spring, Marianne
e extended in numerous ways. One area of intere haw, and Andrew Schwerin for their insightful com-

is extending.Denali and Chronus beyond a UNIX en- onis \we also thank Phil Levis for giving us pointers

vironment. In particular, systems based on Microsofty, 4 ,ap|e related work. This research was supported in

Windows are likely to exhibit qualitatively different con- art by NSF Career award ANI-0132817, funding from
figuration errors. We are also interested in extending{)meI Corporation, and a gift from Nortel N,etworks
Chronus with different time-travel storage mechanisms. ’ '

For example, some administrators use CVS to maintai
a log of configuration changes. Chronus could use CV
check-ins to reconstruct previous system states. [1] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds,

Chronus is not a fully automatic tool: the trou- and A. Muthitacharoen. Performance debugging for dis-
blesh | ftw b d . h tributed systems of black boxes. Rroceedings of the
eshooter must supply a software probe and interpretthe 19iq ACM Symposium on Operating System Princjples

state change that induced the failure. It may be possible 2003.

to reduce this manual effort by combining Chronus with (51 \.G. Baker, J.H. Hartman, H.D. Kupfer, K.W. Shirriff,
related research efforts. For example, capture/replay ~ and J.K. Ousterhout. Measurements of a distributed file
tools could automate probe creation [20], and Back- system. IrProceedings of the thirteenth ACM symposium
tracker [22] could simplify end-to-end diagnosis by map- " Operating SySt‘?mS p”.”c'p"‘?mgl' . .
ping from a low-level state change to a high-level action. [3] G. Banga. ?uto-dlatgnos,lsmof fleltflj| .problefrr:ﬁ InUaSnEE:\IIOIIC))(lI-

: . ance operating system. Proceedings of the
AI fltnal arlea tf_or fu;uéi work 'Soto perf(i)(r;n Z TOLe Annual Technical Conferencéune 2000.

;:omp ede evalua I(I)In 0 b ronfus. urtvg(.)r 0 daté ?Sé4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
focused on a small number of case Studies representing = a Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
common” configuration errors. Although our initial re- the art of virtualization. IrProceedings of the 19th Sym-
sults are promising, we do not have enough data about posium on Operating System Principles (SOSP 2003)

configuration errors in the wild to make strong claims Bolton Landing, N, October 2003.
about the applicability of Chronus. An even harder chal- [5] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright,

lenge is to measure the “usefulness” of our tool. Inthe @nd A. Shostack. Timing the application of security
patches for optimal uptime. IRroceedings of the Six-

end, a complete evaluation of Chronus will likely require teenth USENIX LISA Conferendgovember 2002.
a user study, since simulating a human operator is In'[6] B. Boothe. Efficient algorithms for bidirectional debug

tractable. Work by Brown et al. provides a starting point ging. In Proceedings of the ACM Conference on Pro-
for such an effort [9]. gramming Language Design and Implementat2000.

Although functional, our Chronus prototype could

eferences

(7]

[8] A.A. Brown and D.A. Patterson.

[9] A.B. Brown, L. Chung, W. Kakes, C. Ling, and D.A.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

R. Bowen and K. CoarApache CookbookO'Reilly and
Associates, November 2003.

Undo for operators:
Building an undoable e-mail store. Rroceedings of the
2003 USENIX Annual Technical Conferendane 2003.

Patterson. Experiences with evaluation human-assisted
recovery processes. Proceedings of the International
Conference on Dependable Systems and Netwdtkse
2004.

M.Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution manage-
ment. InProceedings of the First Symposium on Network
Systems Design and Implementatibtarch 2004.

Peter M. Chen and Brian D. Noble. When virtual is better
than real. InProceedings of the Workshop on Hot Topics
in Operating System#lay 2001.

[28

30
Final Report of the CRA Conference on Grand Researcrl]

Challenges in Information Systemshtt p:// www.
cra.org/reports/gc. systens. pdf,2003.

R.J. Creasy. The origin of the VM/370 time-sharing sys-
tem. IBM Journal of Research and Developme?$(5),
1981.

Version management with CVS. https://ww.
cvshone. or g/ docs/ manual / .

G.W. Dunlap, S.T. King, S. Cinar, M. Basrai, and P.M. [32]

Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. IRroceedings of
the 2002 Symposium on Operating Systems Design an
Implementation (OSDI 2002)Boston, MA, December
2002.

J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. [34]

MyLifeBits: Fulfilling the Memex vision. IPACM Multi-
media December 2002.

Jim Gray. Why do computers stop and what can be done
about it ? InProceedings of the 5th Symposium on Reli-
ablity in Distributed Software and Database systedas-
uary 1986.

E. Growchowski. Emerging trends in data storage on
magnetic hard disk drive®atatech 1998.

J. Hart and J. D’Amelia. An analysis of RPM validation
drift. In Proceedings of the USENIX LISA Conference
2002.

J.H. Hicinbothom and W.W. Zachary. A tool for auto-

matically generating transcripts of human-computer in-
teraction. InProceedings of the Human Factors and Er-

gonomics Society 37th Annual Meetiig93.

D.A. Holland, W. Josephson, K. Magoutis, M. Seltzer,
C.A. Stein, and A. Lim. Research issues in no-futz com-
puting. InProceedings of the 8th Workshop on Hot Topics
in Operating System#/ay 2001.

Samuel T. King and Peter M. Chen. Backtracking intru-
sions. InProceedings of the 19th Symposium on Operat-
ing System Principles (SOSP 200Bplton Landing, NY,
October 2003.

Marshall Kirk McKusick, Bill Joy, Leffler, and Fabry. A
Fast File System for UNIXACM Transactions on Com-
puter System(3), 1984.

Microsoft, Inc. Windows XP system
http://nsdn. mcrosoft.comlibrary/
defaul t.asp?URL=/Ili brary/techart/w nd%
owsxpsyst enr est or e. ht m April 2001.

restore.

(26]

[29

(31]

[25] C.B.Morrey and D. Grunwald. Peabody: The time travel-

ling disk. In20th IEEE/11th NASA Goddard Conference
on Mass Storage Systems and Technolodipsl 2003.

Mozilla FAQ: Using mozilla. http://nozill a.
gunnars. net/ nozfaq_use. htmi .

[27] Joshua A. Redstone, Michael M. Swift, and Brian N. Ber-

shad. Using computers to diagnose computer problems.
In Proceedings of the 9th Workshop on Hot Topics in Op-
erating System<2003.

Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. In

Proceedings of the 13th ACM Symposium on Operating
Systems Principle4.991.

S.J. Russell and P. Norvig.Artificial Intelligence: A
Modern Approach Prentice Hall, 2nd edition, December
2002.

D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Vejtch
R.W. Carton, and J. Ofir. Deciding when to forget in the
Elephant file system. IiProceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP’99)
December 1999.

C.A.N. Soules, G.R. Goodson, J.D. Strunk, and G.R.
Ganger. Metadata efficiency in versioning file systems.
In Proceedings of the 2nd USENIX conference on file and
storage technologiedarch 2003.

M. Stonebreaker. The design of the POSTGRES storage
system. InProceedings of the 13th International Confer-
ence on Very Large DatabaseSeptember 1987.

[13.3] VMware, Inc. VMware virtual machine technology.

http://ww. vimnar e. con .

Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H.J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A black-box, state-
based approach to change and configuration management
and support. IfProceedings of the USENIX LISA Confer-
ence October 2003.

[35] Andrew Whitaker, Richard S. Cox, Marianne Shaw, and

Steven D. Gribble. Constructing services with interpos-
able virtual hardware. IfProceedings of the First Sym-
posium on Network Systems Design and Implementation
March 2004.

[36] A. Zeller. Yesterday, my program worked. Today, it does

not. Why? InProceedings of the 7th European Software
Engineering Conferenc&eptember 1999.

