
Constructing Services with Interposable Virtual Hardware

Andrew Whitaker, Richard S. Cox, Marianne Shaw, and Steven D. Gribble

University of Washington

{andrew,rick,mar,gribble}@cs.washington.edu

Abstract

Virtual machine monitors (VMMs) have enjoyed a resur-
gence in popularity, since VMMs can help to solve difficult
systems problems like migration, fault tolerance, code sand-
boxing, intrusion detection, and debugging. Recently, several
researchers have proposed novel applications of virtual ma-
chine technology, such as Internet Suspend/Resume [25, 31]
and transparent OS-level rollback and replay [13]. Unfortu-
nately, current VMMs do not export enough functionality to
budding developers of such applications, forcing them either
to reverse engineer pieces of a black-box VMM, or to reim-
plement significant portions of a VMM.

In this paper, we present the design, implementation, and
evaluation of µDenali, an extensible and programmable vir-
tual machine monitor that has the ability to run modern oper-
ating systems. µDenali allows programmers to extend the vir-
tual architecture exposed by the VMM to a virtual machine, in
effect giving systems programmers the ability to dynamically
assemble a virtual machine out of either default or custom-
built virtual hardware elements. µDenali allows programmers
to interpose on and modify events at the level of the virtual
architecture, enabling them to easily perform tasks such as
manipulating disk and network events, or capturing and mi-
grating virtual machine state. In addition to describing and
evaluating our extensible virtual machine monitor, we present
an application-level API that simplifies writing extensions,
and we discuss applications of virtual machines that we have
built using this API.

1 Introduction

Virtual machine monitors (VMMs) such as
VM/370[8], Disco[6], and VMware [35] have demon-
strated that is feasible to implement the hardware
interface in software efficiently, making it possible to
multiplex several virtual machines (VMs) on a single
shared physical machine. Researchers have recognized
that VMMs are a powerful platform for introducing
new system services, including VM migration [25, 31],
intrusion detection [18], trusted computing [17], and
replay logging [13]. These services all exploit the
unique ability of a VMM to observe and capture all
of the events and state of a complete software system,
including that of the virtual hardware, the operating
system, and applications.

In addition to having this “whole-system” perspec-
tive, VMMs have the advantage that the interface they
expose is simple in comparison to a operating system
API. Virtual hardware events such as disk reads and
writes, MMU faults, and network events have a narrow
and stable interface, whereas operating systems tend to
expose a large number of semantically complex system
calls. The virtual hardware interface is an ideal place for
deploying many kinds of services: the “whole-system”
perspective makes these services powerful, and the sim-
ple virtual hardware interface makes them easy to build
and able to operate on legacy software.

1.1 The VMM as a Service Platform

A VMM is a compelling platform for deploying an in-
teresting class of system services. Unfortunately, today’s
VMMs provide precious little support for developing
new virtual machine services. Because VMMs were not
designed to be programmable or extensible, developers
have had to reverse-engineer pieces of black-box VMMs
to discover or expose the interfaces they need [25], or in
extreme cases, they have had to reimplement significant
portions of the VMM [13]. Worse, because there is no
standard interface or extension framework supported by
today’s VMMs, VM service authors have not been able
to cooperate with each other or re-use developed com-
ponents. For example, ReVirt’s replay ability [13] and
Hypervisor-based fault tolerance [5] are both based on
a similar logging primitive, but it would be difficult for
these two projects to share this common functionality.

The current state of virtual machine services is sim-
ilar to the distributed computing era before the advent
of standardized transport protocols and remote proce-
dure calls [4]. In this era, programmers used a variety of
ad-hoc, home-grown techniques and services to commu-
nicate across machine boundaries, resulting in brittle,
unreliable, and non-interoperable systems. Standard-
ized transport and RPC allowed distributed systems pro-
grammers to focus on the logic of their systems, relying
on underlying plumbing to solve common issues of reli-
able communications, naming, and type marshalling.

In this paper, we attempt to advance the state of
VM service construction by exploring two questions.
First, what should the programmatic interface exposed



by VMMs to VM services look like? Second, what struc-
ture and mechanisms within a VMM are needed to sup-
port this interface well?

To address the first question, we propose a high-level
software toolkit that allows programmers to build ser-
vices in one VM that interpose on the events generated
by another VM’s virtual hardware devices, or to extend
the virtual hardware exposed to virtual machines by im-
plementing new virtual hardware devices. These two
abilities (interposition and extension) allow program-
mers to develop software services that manipulate the
virtual machine interface without worrying about the un-
derlying virtualization mechanisms and plumbing. Be-
cause our toolkit exposes a well-defined API, extensions
and interposition services would work on any VMM that
exposes the same API.

To address the second question, we describe the de-
sign and implementation of a virtual machine monitor
that supports virtual device interposition and extension.
Our VMM, which we call µDenali, is built around a flex-
ible virtual hardware event routing framework that bor-
rows significant pieces of its design from Mach ports [12].
In our framework, virtual hardware events are defined as
typed messages, and virtual hardware devices are sim-
ply sets of ports. Interposition is achieved by re-routing
messages from one virtual machine to another. Extensi-
bility is achieved by allowing a VM to expose ports that
send and receive appropriately typed messages.

The remainder of this paper is structured as follows.
In Section 2, we briefly describe the Denali VMM [36],
which we modified to build µDenali. Section 3 gives an
architectural overview of µDenali, describing the basic
structure of the system and a high-level view of the ex-
tensibility and interposition interface which it exposes.
In Section 4, we focus on the port-based routing frame-
work within µDenali, and we describe the virtual hard-
ware underlying VMs in terms of the message types
and ports that define each virtual device. In Section 5,
we describe a number of virtual hardware device exten-
sions and virtual machine services which we have imple-
mented. We present an evaluation of µDenali in Sec-
tion 6, we discuss related work in Section 7, and we con-
clude in Section 8.

2 Denali Overview

The Denali isolation kernel [36] is an x86-based vir-
tual machine monitor whose goal is to support a large
number of concurrent virtual machines. Denali is a type-
I VMM, meaning that it runs directly on physical hard-
ware, as opposed to type-II VMMs (such as VMware
workstation [35] or user-mode Linux [11]) which run as
applications on a host operating system.

Denali relies on a technique called para-

di
sk N
IC

C
P

U

tim
er

M
M

U

swap

virtual machine

VM •••• •••• ••••VM VM

Denali
VMM

(a) (b)

x86
hardware

virtual
device 1

virtual
device 2

physical
device 1

physical
device 2

virtual
device 3

physical
device 3

Figure 1: Denali virtual machine monitor architec-
ture. The “old” pre-extensible architecture. Each virtual
machine interacts with the virtual machine monitor through
virtual hardware devices; each hardware device is hard-wired
to a virtual device implementation inside the Denali kernel.

virtualization to enhance its performance, scalability,
and simplicity. Rather than exposing a virtual architec-
ture that faithfully reproduces the underlying physical
architecture, Denali strategically modifies the virtual
architecture, retaining the performance advantages of
direct instruction execution but modifying key features
of the virtual architecture such as interrupt processing,
handling non-virtualizable instructions, and timers.

The Denali implementation has progressed signif-
icantly since what was reported in [36]. Most no-
tably, because of the addition of a virtual MMU de-
vice, Denali is now able to run full-fledged operat-
ing systems in a manner similar to Xen [2]. Most
modern OSs run on multiple architectures, isolating
the architecture-dependent pieces of the implementation
from the architecture-independent pieces. We success-
fully ported the NetBSD operating system to Denali by
implementing architecture-dependent components ap-
propriate for the Denali virtual architecture. Because of
differences between our virtual MMU and the x86 MMU,
we cannot run x86 binaries directly, but with recompila-
tion we can run NetBSD and any of its applications.

2.1 Denali’s Architecture

Figure 1 illustrates the Denali virtual architecture.
The interface between each virtual machine and Denali
is a set of virtual hardware devices. Within the Denali
VMM, these virtual devices are “hard-wired” to virtual
device implementations that (1) multiplex the virtual
devices of the many VMs onto their physical counterpart
(including namespace virtualization) and (2) implement
physical resource management policies. Denali supports
the following virtual devices:

Virtual CPU: The virtual CPU executes the instruc-
tion streams of virtual machines, emulates privileged in-
structions, exposes virtual interrupts, and handles vir-
tual programmed I/Os. The virtual CPU also exposes
a number of purely virtual registers, such as a register
which contains the current wall-clock physical time.

Virtual MMU: The Denali virtual MMU exposes a



software-loaded TLB with a fixed number of virtual
address-space IDs (ASIDs). The virtual MMU is a com-
pletely different abstraction than the underlying x86
hardware-based page tables; we made this design choice
to simplify the virtualization of virtual memory. Borrow-
ing terminology from Disco [6], we refer to true physical
memory as machine memory, virtualized physical mem-
ory as physical memory, and virtualized virtual mem-
ory as virtual memory. The virtual MMU allows guest
OSs to implement multiple virtual address spaces, and to
page or swap between virtual memory and physical mem-
ory. Denali itself overcommits physical memory and im-
plements swapping between machine and physical mem-
ory transparently to VMs.

Virtual timers: Denali exposes a virtual timer that
supports an “idle-with-timeout” instruction, allowing
virtual machines to relinquish their virtual CPUs for a
bounded amount of time.

Virtual network: The Denali virtual NIC appears to
guest OSs as a simple Ethernet device. The NIC sup-
ports packet transmission and reception at the link level.

Virtual disk: Stable storage is exposed to guest OSs
as a block-level virtual disk. Guests can query the size
of the disk, and read and write blocks to disk.

Because it supports neither extensibility nor interpo-
sition, implementing the VM services that have appeared
in recent literature would be difficult using Denali. For
example, to checkpoint and migrate a virtual machine,
all virtual device state must be captured, including vir-
tual registers, physical memory pages (whether resident
in machine memory or swapped to physical disk by De-
nali), virtual MMU entries, virtual disk contents, and
any virtual disk operations that are in flight. However,
none of this state is exposed outside of the VMM. In the
next section of this paper, we describe the architecture
of µDenali, a significant reimplementation of the Denali
VMM which supports both extensibility and interposi-
tion to support these kinds of services.

3 µDenali: an Extensible VMM

A VMM provides three basic functions: it virtualizes
the namespace of each hardware device in the physical
architecture, it traps and responds to virtual hardware
events to implement virtual hardware device abstrac-
tions, and it manages the allocation of physical resources
to virtual machines. In the Denali VMM, these three
functions were co-mingled. The major insight of µDenali
is that these functions can be separated from each other,
and by doing so, virtual hardware event interposition
and extensibility become a simple matter of routing one
VM’s virtual hardware events to another VM.

Physical resource management: µDenali bor-
rows significant code from Denali to interact with and
manage physical devices. We utilize low-level code and
device drivers provided by the Flux OSKit [15], and we
implement our own global resource management poli-
cies across VMMs, such as round-robin CPU schedul-
ing across VMMs, fair queuing of received and transmit-
ted Ethernet packets, and a static allocation of physical
disk blocks. These global resource management policies,
which we do not allow to be extended or overridden,
provide performance isolation between VMs.

Device namespace virtualization: Each virtual
device in the Denali architecture is capable of generating
and receiving several device-specific events. For exam-
ple, virtual disks receive disk read and write requests,
and generate request completion events. As another ex-
ample, virtual CPUs generate interrupts and faults. In
µDenali, we associate a typed message with each of these
device-specific events. Implicit in the message type defi-
nitions are the namespaces associated with devices: disk
event messages contain block offsets, and CPU faults
contain the memory address of the faulting instruction.

Virtual hardware event trapping and routing:
Denali directly executes the instructions of virtual ma-
chines, but privileged instructions and virtual hardware
device interactions are trapped to and emulated by the
VMM. In µDenali, we borrow Denali code to trap on
these events, but instead of directly handing them off to
virtual device implementations within the VMM, we en-
code these events within typed messages and route the
messages to an endpoint. µDenali contains a routing
infrastructure which associates destination ports with
events generated by the hardware devices of each VM.
Default virtual hardware devices within µDenali have
ports, as do special interposition devices associated
with each VM. By binding a hardware device of one VM
(the child) to the interposition device of another (the
parent), the parent VM gains the ability to interpose on
the child’s virtual device. The parent VM can either
reroute the events back to µDenali’s default virtual de-
vice implementation, or handle them itself, in which case
the parent becomes an extension to the virtual architec-
ture of the child.

Figure 2 illustrates the µDenali architecture. In Fig-
ure 2(a), we show the structure of a virtual machine.
Each VM sees a collection of virtual hardware devices
with which it interacts, similar to Denali. Unlike Denali,
a µDenali VM can also interact with its interposition de-
vice. A parent VM receives virtual hardware events from
children VMs on which it interposes, and the parent can
send response events (either to µDenali or to the child)
over this device. Additionally, the interposition device
exposes various control functions to a parent, such as
the ability to instantiate a new child VM, suspend or



di
sk N
IC

C
P

U

tim
er

M
M

U

swap in
te

r-
po

si
tio

n

guest OS

ap
ac

he

ss
hd • • •

lib_interpose

Internet
suspend/resume

(a)

virtual machine

VM 1

µµµµDenali
VMM

x86
hardware

virtual
device 1

virtual
device 2

physical
device 1

physical
device 2

virtual
device 3

physical
device 3

VM 2 VM 3 VM 4 VM 5

event routing
framework

(b)

Figure 2: µDenali virtual machine monitor architecture. (a) A new virtual hardware device, the “interposition
device”, is visible to each VM. The guest OS exposes events routed through this interposition device to user-level virtual
machine services, like Internet suspend/resume, with the help of a C library called lib interpose. (b) A VM’s virtual hardware
devices can be bound to other VMs’ interposition devices, or to default virtual devices implemented in the VMM. An event
routing framework (based on Mach ports [12]) routes virtual device events to appropriate endpoints, enabling both event
interposition and virtual device extensions.

resume execution of a running child VM, or extract the
hardware state of a child VM from µDenali.

The guest operating system within a virtual machine
can choose to handle virtual hardware and interposition
device events as it sees fit. In our port of the NetBSD
operating system to µDenali, we have written NetBSD
device drivers for the “regular” virtual hardware devices,
and we have exposed the interposition device to user-
level applications through a high-level interposition li-
brary written in the C programming language. Using
this interposition library (lib interpose), user-level appli-
cations can implement virtual machine services, such as
Internet Suspend/Resume, which manipulate the device
state and events generated by other VMs.

In Figure 2(b), we show the µDenali VMM archi-
tecture. Similar to Denali, µDenali runs directly on x86
hardware, and contains a set of default virtual device im-
plementations. µDenali also contains an event routing
framework, which manages bindings between ports as-
sociated with virtual hardware devices of running VMs,
and routes typed messages according to these bindings.
The figure shows five virtual machines. VM1 is the par-
ent VM of two children (VM2 and VM3). VM1 receives
and handles all events generated by all virtual devices of
VM2, and some virtual devices of VM3. VM2 is a par-
tial parent of VM3, receiving events from the remaining
virtual devices of VM3. VM1 has no parent, meaning
that all of its virtual device events are bound to default
virtual devices within µDenali. Similarly, VM4 is the
parent of VM5.

3.1 The NetBSD Interposition Library

The µDenali interposition device defines the set of
extensibility and interposition operations that a parent

VM can perform on a child. The interface to this device
consists of a set of downcalls that a parent initiates when
it wishes to perform an action on a child (for example,
to instantiate a new child VM), and a set of events and
responses that are exchanged between the parent and
µDenali when an event of interest happens within the
child VM.

The interposition device interface is implemented in
terms of architecture-level programmed I/O operations
and interrupts. Our NetBSD interposition library, with
the help of the NetBSD guest OS, exposes this interface
to applications in terms of function calls in the C pro-
gramming language. In the remainder of this section,
we describe the key components of the interposition de-
vice interface by showing fragments of the interposition
library API.

One key design decision we made was to focus on
local extensibility and interposition—that is, the inter-
position device only exposes events generated by child
virtual machines. We do not expose global events, such
as µDenali scheduler decisions or machine memory al-
location and deallocation events. Because of this, the
µDenali extensibility framework does not suffer from
security issues plaguing extensible operating systems,
which permit extensions to modify global system behav-
ior [3]. µDenali extensions are isolated from the µDenali
VMM and from other VMs as a side-effect of being imple-
mented inside their own virtual machine, and extensions
can only affect children VMs.

3.1.1 Virtual Machine Control

The control API allows a parent VM to create, de-
stroy, start, and stop child virtual machines. Figure 3
shows a subset of the NetBSD C library functions and



typedef struct {

// the swapDevice provides backing store for the

// child’s physical pages when Denali swaps.

SwapDevice *swapDevice;

// a Disk provides block-addressable storage.

Disk *disk;

// (other virtual devices omitted, for brevity.)

} VirtualMachine;

// create and destroy child VMs.

int createVM(VirtualMachine *vm, char *macAddr);

int destroyVM(VirtualMachine *vm, char *macAddr);

// associate a local /dev/virtethX block device

// with a new virtual Ethernet in the child.

int createEthernet(VirtualMachine *vm);

// suspend and resume a child VM.

int suspendVM(VirtualMachine *vm);

int resumeVM(VirtualMachine *vm);

Figure 3: Virtual machine control functions. The VM
control portion of the interposition API allows parent VMs
to create, destroy, start, and stop child VMs.

structures associated with these control operations.
The create and destroy operations permit a parent to

dynamically assemble a child out of constituent virtual
hardware devices, and then cause µDenali to instantiate
and begin executing the assembly. For each device type,
the parent must either provide callback functions to han-
dle messages associated with that device, or provide an
alternate routing port (such as a parent VM’s port, or
µDenali default device ports) for the device to bind to.

The suspend and resume operations act on already
active virtual machines. These commands are often used
in conjunction with other interposition commands. For
example, a checkpoint application would stop a virtual
machine before extracting the checkpoint to ensure that
it obtains a consistent snapshot of virtual device state.

3.1.2 I/O Device Interposition

The I/O device API allows a parent VM to interpose
on virtual device events raised by child VMs, and to
either re-route or respond to those events. This API
allows parents to interact with virtual disks, Ethernets,
and swap store backing (virtual) physical memory. As in
Denali, µDenali device events are simplified idealizations
of the underlying physical devices. For example, the
virtual disk interposition interface supports two principle
operations: reading and writing disk blocks. Figure 4
shows a representative subset of the I/O device API.

We chose to special-case the interposition interface

// the virtual Disk device callback functions

typedef struct {

// the child generated a write event.

int (*diskWrite)(char *buffer, int offset,

int num_sectors);

// the child generated a read event. If the

// parent chooses to handle the event, it

// puts the appropriate data in "buffer".

int (*diskRead)(char *buffer, int offset,

int num_sectors);

// the child is asking the disk to report

// how many sectors it contains.

int (*getSectorSize)(void);

} Disk;

Figure 4: I/O device interposition functions. The I/O
device interposition API permits parents to interpose on and
respond to their children’s device operations. In this figure,
we show only the interface associated with the virtual disk;
other devices have similar interfaces.

to children’s virtual Ethernet devices. The interposed
Ethernet is exposed to the parent as a network device
within NetBSD, (e.g., /dev/virteth0). This allows us
to reuse existing networking software like NAT proxies,
routers, and intrusion detection systems within a virtual
machine service. From the point of view of the parent
VM, it is connected to its child over a a dedicated net-
work interface.

3.1.3 Exposing µDenali Internal State

In practice, not all virtual machine state can be di-
rectly exported through the interposition device. For
performance reasons, we chose to cache run-time state
such as hardware registers, MMU mappings, in-flight
virtual device operations, and the status of swap buffers
inside the µDenali kernel itself. However, to implement
services such as checkpoint and migration, parent virtual
machines must be able to flush and access this state upon
request. In practice, only “hard” state must be saved.
For example, Ethernet packets that are queued for trans-
mission or delivery inside µDenali can be discarded, be-
cause doing so is consistent with the best-effort semantics
of Ethernet networks.

Because much of this run-time state is platform spe-
cific, µDenali encapsulates it inside in an opaque data
structure. Extensions such as debuggers that require
low-level access to platform-specific structures must ma-
nipulate this run-time state with knowledge of µDenali’s
encapsulation syntax. Figure 5 shows a subset of the
flush and state-capture functions that are exposed by
the interposition device.



// functions to flush cached state from

// Denali, and extract/restore kernel

// internal associated with a VM.

int flushSwap(VirtualMachine *vm);

int extractMMUmappings(VirtualMachine *vm,

MMUState *ms);

int restoreMMUmappings(VirtualMachine *vm,

MMUState *ms);

int extractCPUstate(VirtualMachine *vm,

CPUState *cs);

int restoreCPUstate(VirtualMachine *vm,

CPUState *cs);

Figure 5: Flushing and extracting VMM state.
µDenali internal state associated with a VM can be flushed
and extracted using this part of the API. Here, we only show
a portion of the full API.

3.1.4 Tracking Non-Determinism

Tracking and logging non-deterministic events is
necessary to implement replay services such as Re-
Virt [13]. We have not yet finished the implementation
of this functionality, but we have a complete design that
takes advantage of µDenali’s message routing layer.

To facilitate logging and replay services, µDenali
must expose two types of information: the precise
instruction-level timing of asynchronous events (such as
virtual interrupts), and the content of events that are
obtained from external input, such as user keystrokes or
network packets. Both types of information are read-
ily available in the µDenali architecture. Asynchronous
events are defined to occur when the message routing in-
frastructure delivers an event to a VM, and the content
of external events can be observed through interposition.
For example, an external Ethernet packet arrives when a
virtual Ethernet packet message is delivered to a virtual
Ethernet device, and the content of that message can be
observed and logged by a parent through interposition.

In our design, µDenali assists with the logging of
non-deterministic events by recording the timing of mes-
sages delivered to a child VM, and periodically flush-
ing this log to the parent’s interposition interface. Each
log entry contains a three-tuple: a unique event ID, the
event type (which is simply the type of the message de-
livered to the child port), and a delivery time. As with
ReVirt, delivery time is measured by a software instruc-
tion counter [27] which includes the instruction address
and a counter of the number of backward branches exe-
cuted during the lifetime of the child VM.

Replay requires the ability to interrupt a child VM
before the execution of a logged non-deterministic event.
To support this, the parent VM must be able to pass a

previously recorded log file to µDenali, which uses the
log to trap the child VM at the precise moment that a
logged non-deterministic event should occur. Our im-
plementation of logging and replay is underway, but not
complete.

3.2 Summary

In this section, we described the architecture of the
µDenali extensible virtual machine monitor, and pre-
sented the high-level interposition and extension inter-
face that it exposes. This interface, which can be ac-
cessed through an application-level library implemented
in the C language, provides programmers with a power-
ful and natural way to implement new virtual machine
services. In the following section of the paper, we drill
down into the design of the message routing infrastruc-
ture inside µDenali.

4 Event Routing in µDenali

As described in the previous section, µDenali con-
tains an event routing framework that is responsible for
receiving, routing, and delivering virtual device events.
In essence, the event routing framework is a virtual bus
that provides a communication channel between a VM’s
virtual devices and the implementation of those devices.

Our routing framework design was inspired by Mach
ports and messages [12]. A port is an abstraction of a
protected communication channel that facilitates the re-
ception and transmission of typed messages and port
capabilities. Each virtual device in each virtual machine
has a set of ports associated with it, and ports corre-
spond to operations supported by virtual devices. By
binding a virtual device port from a child VM to the
interposition device port of a parent VM, events gen-
erated by that child’s virtual device are converted into
typed messages and delivered to the parent. Figure 6
illustrates the routing framework design.

4.1 Port Capabilities and the Port Table

Ports are protected by capabilities. Like Mach,
µDenali defines three types of capabilities: the receive
right allows the holder to receive messages delivered to
that port, the send right allows the holder to send mes-
sages to the port, and the send-once right allows the
holder to send a single message to the port (for example,
to allow a message recipient to send a reply). A capa-
bility can be transmitted over ports in order to grant a
privilege to the recipient. Only send rights can be copied;
if a send-once right is passed in a message, the sender
loses that right. The holder of a receive right (defined
to be the port owner) may create send and send-once
capabilities for that port.



di
sk N
IC

C
P

U

tim
er

M
M

U

swap in
te

r-
po

si
tio

n

m

m

m

m

m

m

m

m

full ¬full
m

m ¬full
m

m

m

m

virtual machine 0

port name port rights port type refcount ringbuf

di
sk N
IC

C
P

U

tim
er

M
M

U

swap in
te

r-
po

si
tio

n

m

mm

m

m

¬ full ¬fullm ¬full
m

m

virtual machine 1

0 R disk read reply 0

0 1 2 0 1 2

VM1:0

1 R disk write reply 1 VM1:0

2 S disk read request 1 VM0:2

3 S disk write request 1 VM0:2

VM 1’s port table

(a)

(b)

Figure 6: µDenali port tables. (a) VM1’s virtual disk is
managed by VM0. (b) A subset of VM1’s port table. Because
VM1 can generate virtual disk read and write requests, VM1
has send rights on the ports associated with those operations
(ports 2 and 3). VM0 manages the associated receive ports,
and uses its ring buffer #2 to buffer messages arriving on it.
Because VM0 manages the disk, it needs to be able to send
disk read and write replies back to VM1. VM1 has receive
ports (ports 0 and 1) to receive these replies, and it uses its
ring buffer #0 to buffer disk reply messages.

The µDenali VMM maintains a table of port capabil-
ities on behalf of each virtual machine. Because this port
table is managed inside the VMM, port capabilities are
unforgeable, similar to UNIX file descriptors. From the
point of view of µDenali, a virtual machine is sim-
ply a port table. Much like a MCS capability list [10]
or Hydra local name spaces [37], a port table simulta-
neously defines the operations that can be performed on
an object (virtual devices) and the namespace in which
those objects are embedded (the virtualized namespaces
of virtual devices).

When a parent VM creates a new child VM, the par-
ent sets up the initial port table of the child. To do this,
the parent creates individual ports in the child’s port ta-
ble, grants port capabilities as necessary, and binds the
ports as appropriate. A parent can bind a child’s port to
its own interposition device, to the interposition device
of another VM for which it has a port send capability,
or to the port associated with the default virtual device
implementations inside µDenali.

4.2 Port Queues and Message Buffers

Like hardware buses, the µDenali event routing
framework itself never stores messages. All message
queuing must be implemented by the virtual device
which owns the port which receives the message. To
accomplish this, each virtual machine maintains one or

more ring buffers associated with its ports. When a mes-
sage arrives on a port, µDenali atomically delivers and
advances the ring buffer. If the ring buffer is full, all
ports associated with it enter the “full” state, and error
messages are returned to source ports on future message
delivery attempts. When the ring buffer is drained by
the virtual machine, the receive ports associated with it
leave the full state, and notifications are sent to all send
ports bound to them.

Because the event routing framework has no storage,
providing atomic message delivery is simple: the rout-
ing framework promises either successful delivery, or an
immediate error. This lack of storage also means that
the routing framework itself is stateless, meaning that
it need not be involved in the checkpoint or recovery of
a virtual machine. Note, however, that port tables and
ring buffers must be included in checkpoints.

µDenali messages contain a small amount of in-band
data (16 32-byte words). For several of our devices, such
as virtual MMUs, this suffices. For those that deal with
larger blocks of data (e.g., virtual disks), µDenali pro-
vides an out-of-band data passing mechanism to transfer
up to 64KB of data with each message. This out-of-band
channel is similar in spirit and usage to direct memory
access (DMA) on modern physical hardware devices.

4.3 Example Virtual Devices, Ports, and
Message Types

µDenali defines a standard set of virtual devices and
associated operations and events. Operations and events
are exposed to virtual machines by the routing frame-
work by ports and message types, respectively. We now
discuss a few virtual devices and their ports and mes-
sage types. Note that there is a one-to-one correspon-
dence between ports and messages in µDenali’s event
routing framework, and function calls and arguments in
the lib interpose interposition library described in Sec-
tion 3.1. Though we only discuss a subset of the virtual
devices supported by µDenali, the other virtual devices
have similar and consistent designs.

4.3.1 Virtual CPU

A VM’s virtual CPU device (vCPU) is responsible
for executing the instructions of the guest operating sys-
tem and its applications, managing the registers of VMs,
and exposing ports and messages to VMs. All virtual
machines currently rely on the default vCPU implemen-
tation inside µDenali.

The vCPU shares most of its specification with the
underlying x86 physical CPU. With the exception of a
handful of non-virtualizable instructions [29] which have
undefined (though secure) results, all unprotected in-
structions are available to the guest. All of the un-
protected x86 registers are also available to the guest.



µDenali augments the x86 CPU with a set of purely
virtual instructions and registers that have no physical
counterpart, as discussed below.

The vCPU maintains each VM’s port table, and also
handles the transmission and reception of messages on
ports. To transmit a message, a VM places the message
and destination port-descriptor in a fixed memory loca-
tion and invokes a virtual instruction. The vCPU device
traps this instruction, type-checks the message against
the port table, swizzles any port references in the mes-
sage, converts the physical addresses referring to out-of-
band data into machine addresses, and attempts to place
the message in the receive port ring buffer. From the
point of view of the VM transmitting the message, this
process corresponds to a single atomic instruction (al-
beit a high latency one). On reception of a message, the
vCPU interrupts the receiver VM and jumps to a guest-
specified interrupt handler, assuming virtual interrupts
are enabled.

The vCPU provides the mandatory implementation
of all VMs’ virtual MMU devices. We implemented this
device in µDenali because it is the most frequently used
device in the system, and its implementation is closely
intertwined with physical page table and machine mem-
ory management. We have not yet considered whether
it is possible or pragmatic to permit virtual MMUs to
be interposed on or extended by parent VMs.

4.3.2 Virtual Swap Device

Interposing on the virtual swap device permits a par-
ent VM to manage the swap file backing a child VM’s
physical memory pages. µDenali decides when to reclaim
a machine page that is bound to a physical page of a VM,
and when it does so, it generates swap events on behalf
of the child. A swap device is conceptually similar to
external pagers in Mach and V [38, 7]. By interposing
on a swap device, a parent has the ability to checkpoint
all of the physical memory of its child.

A swap device has three ports, and supports four
message types. Whenever a VM generates a physical-to-
machine page fault within µDenali, the VMM generates
a fault message and sends it to the VM’s fault receive
port. The handler is responsible for processing the mes-
sage and sending a reply back when the fault has been
serviced. When µDenali needs to swap out a physical
page, it generates a swap-out message and sends it to
the swap receive port of the VM. Finally, a parent VM
can generate a flush or flush-all message to flush one or
all dirty physical pages back to the swap device.

4.3.3 Virtual Ethernet Device

The virtual Ethernet device manages the transmis-
sion and reception of Ethernet packets. A virtual Eth-
ernet device has two ports, and supports one message

type. When an Ethernet frame arrives for an Ethernet
device, an Ethernet packet message is created and sent to
the virtual Ethernet device’s receive port. When a VM
transmits an Ethernet frame, another Ethernet packet
message is created and sent on the virtual Ethernet de-
vice’s send port.

A VM’s virtual CPU facilitates the creation of new
virtual Ethernet devices. A parent VM can send a create

new virtual Ethernet message to the Ethernet creation
port of the virtual CPU, causing a new virtual Ethernet
device to be created with a specific MAC address.

4.4 Summary

In this section, we described µDenali’s event rout-
ing framework, whose design borrows heavily from Mach
ports and messages. We also described the ports and
message types associated with virtual devices supported
by µDenali. In the next section of the paper, we describe
several virtual device extensions and virtual machine ser-
vices that we have implemented on µDenali.

5 Application Case Studies

In this section of the paper, we demonstrate how
µDenali’s extensibility and interposition mechanisms can
be used to develop powerful virtual device extensions and
virtual machine services.

5.1 Internet Suspend/Resume

The Internet Suspend/Resume project [25] uses
the Coda file system to migrate checkpointed VMware
virtual machines across a network. We have re-
implemented this functionality in µDenali, albeit using
the less efficient NFS rather than Coda.

Migrating a VM consists of three phases: check-
pointing and gathering the complete state of the VM,
transmitting this state over the network, and unpack-
aging the state into a new VM on the remote host. In
µDenali, we use virtual device extensions to maintain
and gather the state of a child VM’s virtual devices (for
example, a swap disk extension maintains the complete
physical memory image of the child), and we rely on the
state extraction routines in the interposition library to
extract µDenali internal hard state associated with the
child.

To transmit VM state over a network, we rely on the
NFS file system. The parent stores all gathered state
inside an NFS file system also accessible to the remote
host on which the VM will be resumed.

We found the development of migration on top of
lib interpose to be straightforward. The entire imple-
mentation consists of 289 C source lines. The bulk of
this complexity is dedicated to serializing C structures



into a byte stream, a task handled automatically by more
modern languages such as Java.

5.2 “Drop-in” Network Services

As an example of a virtual machine service that ex-
ploits network device interposition, we have created a
dynamically-insertable network intrusion detection sys-
tem (IDS) embedded within a virtual machine. Our sys-
tem (which we call VM-snort) acts as a parent that in-
terposes on other VMs’ virtual Ethernet devices. Any
network packet flowing in or out of a child VM must
pass through VM-snort. We developed VM-snort using
the Snort network intrusion detection system.

Because VM-snort is embedded in a virtual ma-
chine checkpoint, it is possible for a third party to cre-
ate a “pre-packaged” IDS image that can be dynam-
ically instantiated at customer sites, using the check-
point/restore functionality we previously described.
Thus, VM-snort is the virtual equivalent of a dedicated
physical intrusion detection appliance.

This model of embedding a network service inside a
VM is generalizable to other network services. Many ac-
tive services (i.e., those that modify in addition to mon-
itor packets) are possible, such as drop-in VPN servers,
transparent Web proxy caches, or application-level fire-
walls. Other passive services besides VM-snort are also
possible (i.e., services that only passively monitor pack-
ets), such as a dynamically deployed distributed worm
detector or an Internet weather service sensor.

5.3 Continuous Rejuvenation

In practice, it is extremely difficult to remove all
bugs from complex software systems. Many bugs in pro-
duction systems are “heisenbugs” [20], which depend on
intricate sequences of low-probability events. Other er-
rors like memory leaks can emerge slowly, thereby defeat-
ing many testing procedures. Researchers have proposed
pro-active restarts to forestall the effect of these latent
errors [22]. However, simply restarting a machine creates
short-term unavailability, which may be unacceptable for
some services. Another alternative is to replicate the ser-
vice across physical machines, but this can increase cost
and administrative overhead.

By using restartable virtual machines, we can
achieve many of the benefits of software rejuvenation
without the accompanying downtime. To demonstrate
this, we have constructed a service called Apache*, which
serves web requests from a (virtual) web server farm.
The system consists of K child nodes, each running a
standard copy of the Apache web server. The parent VM
acts as a layer-3 switch, redirecting incoming requests to
the child that is active at any given time. After a con-
figurable time period, the parent VM redirects requests

to the next child in the pipeline, and reboots the child1.

Apache* leverages µDenali’s interfaces for disk,
swap, and network interposition. Our implementation
was greatly simplified by leveraging NetBSD’s built-in
NAT functionality to handle request distribution. We
use an implementation of copy-on-write disks (described
below) to isolate state changes inside the Apache virtual
machines. The entire implementation (including COW
disks) required 1131 lines of C code.

5.4 Disk and Swap Device Extensions

Because µDenali virtual swap devices are extensible,
implementing novel bootloaders is simple. As a demon-
stration of this, we implemented a network boot loader,
which fetches the child’s swap image over HTTP. The
boot loader saves the swap image in the NetBSD file sys-
tem of the parent. When swap-in or swap-out events are
generated by the child’s virtual swap device, the boot-
loader serves the appropriate frames from this file. Our
bootloader makes use of the wget Unix program to fetch
files from Web servers. We implemented the portion
of the bootloader that handles swap events and serves
frames from a file; this required 94 lines of C code.

Using µDenali’s disk interposition mechanism, we
built a simple copy-on-write (COW) disk extension. Our
COW disk extension permits multiple VMs to share a
base disk image, but exposes the abstraction of a pri-
vate mutable disk per VM. Like all standard COW im-
plementations, our extension maintains a file containing
differences between the base disk image and each VM’s
current disk image. A COW disk is useful in many sit-
uations, including efficiently creating multiple “cloned”
virtual machines on a single physical machine. Our copy-
on-write disk extension consists of 675 lines of C code.

We are currently working on a “time-travel” disk
implementation, which records all disk updates to a log.
This provides a recovery mechanism that allows a system
to roll back to a previous working state.

6 Evaluation

Our evaluation explores three aspects of µDenali’s
performance. First, we measure the basic overhead in-
troduced by µDenali’s virtualization and extensibility.
Next, we measure the performance of interposed virtual
hardware devices (such as interposed disks and Ether-
nets), and compare it to non-interposed virtual devices.
Finally, we measure the performance of our Internet Sus-
pend/Resume and VM-snort services.

For our experiments, µDenali ran on a 3.2 GHz Pen-
tium 4 with 1.5 GB of RAM, an Intel PRO/1000 PCI

1Actually, there is a delay before rebooting a virtual machine

to allow existing connections to terminate.



7.2 µsec
virtualization overhead of µDenali’s virtual Ethernet

(send, with interposition)

2.0 µsec
virtualization overhead of µDenali’s virtual Ethernet

(send, without interposition)

1.2 µsecµDenali NetBSD null system call

0.38 µsecnative NetBSD null system call

latencyoperation

Figure 7: VMM overhead. This table compares mi-
crobenchmarks run on Linux executing directly on physical
hardware, and on our ported NetBSD executing on µDenali.
The “virtualization overhead of µDenali’s virtual Ethernet”
latencies show the overhead introduced when packets are sent
through a virtual Ethernet device, excluding the physical
Ethernet send costs. The cost of the interposition machinery
is shown by comparing the “without interposition” and “with
interposition” cases.

gigabit Ethernet card connected to an Intel 470T Eth-
ernet switch, and an 80 GB IDE hard drive running at
7200 RPM. For any experiment involving the network,
we used a 1500 byte MTU. We used the httperf [28] Web
workload generation tool.

Our Ethernet card is not well-supported by conven-
tional NetBSD on physical hardware. Therefore we com-
pare µDenali’s NetBSD performance with Linux in the
results that follow.2 We do not believe this qualitatively
changes our results.

6.1 Basic Overhead

A major source of overhead for VMMs is the trap-
ping and emulation of privileged instructions. For
µDenali, these instructions include virtual hardware de-
vice programmed I/O instructions and system calls is-
sued by a guest OS. The event routing framework in
µDenali imposes additional overhead on interposed vir-
tual device operations.

Figure 7 shows the cost of commonly used op-
erations. Null system calls (getpid) are more than
three times as expensive on µDenali as on conventional
NetBSD. In addition to trapping on the original system
call, µDenali must trap on the system call return. Our
trap handling code is based on old Mach code, and has
not been as carefully optimized as NetBSD.

Network communication is more expensive on a
VMM because packet send operations must be trapped
and emulated. µDenali incurs an overhead of 2.0 mi-
croseconds to send a 1400 byte packet through a (non-
interposed) virtual Ethernet, relative to a physical Eth-
ernet driver. This overhead includes the cost of a ker-
nel trap and packet copy. For interposed Ethernets, the

2Note that NetBSD running on µDenali can exploit our physical

gigabit card, since our VMM interacts with the true physical device

and has the correct drivers, while a NetBSD VM interacts with a

simple virtual device.

214 Mb/sec
116 

req/sec
344 

req/sec
1350 

req/sec

µDenali NetBSD, 
Snort interposed 

Ethernet

387 Mb/sec

684 Mb/sec

728 Mb/sec

Bulk TCP

325 
req/sec

880 
req/sec

2200 
req/sec

µDenali NetBSD, 
null interposed 

Ethernet

550 
req/sec

1400 
req/sec

3200 
req/sec

µDenali NetBSD,
no interposition

614 
req/sec

2300 
req/sec

6700 
req/sec

Linux

Apache, 
128KB

Apache, 
64KB

Apache, 
2KB

Figure 8: µDenali network overhead. Moving from left
to right, these tests transition from system-call intensive to
packet-intensive. µDenali performs better in the packet-
intensive regime. The 3x system call penalty we previously
described contributes to a substantial performance loss for
small transfers, and a moderate performance loss for large
transfers.

message routing framework within µDenali introduces
an additional cost of 5.2 microseconds, which includes
the cost of a message transfer, a context switch to the
“parent” VMM, and message reception. This value rep-
resents an upper bound because µDenali is capable of
batching multiple messages per receive operation.

6.2 Device Interposition Overhead

In this section, we evaluate the performance of
µDenali’s virtual network and disk devices, and com-
pare the performance of these devices with and with-
out interposition. To evaluate network performance, we
benchmarked the Apache Web server serving static doc-
uments of various sizes. We also measured bulk TCP
throughput. Figure 8 shows results for four configu-
rations: 1) Native Linux, 2) µDenali NetBSD without
Ethernet interposition, 3) µDenali with “null” Ethernet
interposition, which provides simple packet forwarding
via a parent VM, and 4) µDenali with Snort running in-
side the interposing VM. We use the default Snort rule
set. Our generated traffic stream consisted of normal
(non-malicious) Web requests, so Snort performed very
little logging.

Figure 9 shows the same network performance re-
sults graphically by normalizing µDenali’s performance
against Linux. Without interposition, µDenali’s perfor-
mance degrades relative to Linux as the TCP transfer
size decreases. µDenali obtains 94% of Linux’s bulk TCP
bandwidth, but only 48% of Linux’s 2k Web throughput.
This discrepancy arises because TCP connection setup
is more expensive on µDenali, owing to the 3X system
call performance gap. For bulk TCP throughput and
large Web documents, there are fewer system calls, and
µDenali performs competitively with Linux.

Although the virtualization overhead is highest for
short TCP transfers requests, the additional overhead



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apache 2KB Apache 32KB Apache 128KB TCP

no
rm

al
iz

ed
 th

ro
ug

hp
ut

uDenali, no interposition

uDenali, null interposition

uDenali, Snort interposition

Figure 9: Network interposition overhead: Results are
normalized against a native Linux machine. For small trans-
fers, system call costs dominate. For large transfers, per-
packet costs dominate. Interposing on network devices adds
to per-packet latencies, resulting in a relative performance
drop for large transfers.

45 MB/secLinux

37 MB/secµDenali NetBSD, interposed disk

39 MB/secµDenali NetBSD, native disk

Sequential Read Throughput

Figure 10: Disk interposition overhead. This table
shows the performance overhead of µDenali’s virtual disks,
with and without interposition.

due to interposition is smallest for short transfers. For
example, the additional overhead for null interposition
versus no interposition is 16% for 2k web requests and
41% for bulk TCP transfers. µDenali only imposes addi-
tional overhead on packet delivery, and therefore system
call-intensive workloads are less affected by interposition.
For Snort interposition, the per-packet overhead is large
due to Snort’s data copies and packet inspection rou-
tines. Snort is known to carry a high per-packet cost;
even well-tuned installations can have difficulty keeping
up with a heavily utilized 100 Mb/s Ethernet.

To evaluate disk performance, we used the UNIX dd
utility to perform large, contiguous disk reads. In Fig-
ure 10, we compare the throughput of Linux, µDenali
using a native (non-interposed disk), and µDenali using
an interposed disk. The interposed disk is implemented
as a file inside the parent VM’s local file system. The
parent’s file system was initially empty, and therefore
the child’s blocks are likely to be nearly contiguous on
disk. The sequential read workload is highly disk-bound,
and therefore µDenali’s numbers (with or without inter-
position) do not differ significantly from Linux.

6.3 Virtual Machine Services

We evaluated our Internet Suspend/Resume service
using an Apache Web server as the migrating VM. We

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

time (seconds)

32
K

B
 r

eq
s/

se
c

Figure 11: Migrating an Apache server. This timeline
shows the behavior of an Apache Web service, before, during
and after migration.

0

100

200

300

400

500

600

0 10 20 30 40 50

time (seconds)

se
rv

ed
 lo

ad
 (

32
K

B
 r

eq
ue

st
s)

200 reqs/sec
offered load

500 reqs/sec
offered load

Figure 12: Apache* service performance. This time-
line shows the behavior of Apache before, during and after
migration. The two lines correspond to two different work-
loads: 500 requests per second (open loop), and 200 requests
per second (open loop).

configured a Web client to submit requests for a 32 kilo-
byte document 200 times per second. As shown in Fig-
ure 11, the Web server satisfies these requests before and
after its migration. The instability that is evident imme-
diately after migration is due to a batch of requests that
are waiting inside the VM’s Ethernet ring buffer. The
long migration latency (12 seconds) is primarily due to
our use of NFS as a transport mechanism.

We evaluated our Apache* service using a three vir-
tual machine Apache cluster. The parent VM was con-
figured to garbage collect the active child VM after 10
seconds. Figure 12 shows the time-varying performance
of Apache* against offered loads of 200 requests per sec-
ond and 500 requests per second for a 32KB Web doc-
ument. For 200 requests per second, the throughput
remains constant over time, which indicates no service
disruption across VM restarts. At 500 requests per sec-
ond, the system is less stable, suggesting the system is
near its performance limit.



7 Related Work

µDenali is related to research into applications of vir-
tual machines, novel virtual machine architectures, and
extensible systems.

7.1 Virtual Machine Applications

Many researchers have been building novel applica-
tions that make use of virtual machine monitors. In-
ternet Suspend/Resume [25] utilizes the checkpoint and
resume functionality within VMware [35] to migrate vir-
tual machines across a network. Sapuntzakis et al. [31]
build a similar system, and show how to optimize perfor-
mance with novel compression techniques. ReVirt [13]
provides efficient logging and replay of virtual machines,
and using this, King and Chen show how to identify se-
quences of events that lead to an intrusion [24]. The
Stanford Collective project [30] uses VMMs to imple-
ment virtual appliances that facilitate software deploy-
ment and maintenance.

To implement these virtual machine services, the au-
thors have had to reverse engineer relevant interfaces
from a black-box VMM, or reimplement significant por-
tions of the VMM in order to provide the interfaces they
require. The goal of the µDenali VMM is to facilitate
these kinds of services by exposing a carefully designed
interposition and extension interface.

7.2 Novel Virtual Machine Monitors

Several research projects have focused on building
novel virtual machine monitors. The Denali isolation
kernel [36] relies on paravirtualization to implement
lightweight virtual machines; µDenali is an enhance-
ment to Denali. Xen [2] provides similar functionality
to Denali, and focuses on providing high performance
and strong isolation. Many user-level ports of Linux
exist, including UMLinux [11]. Commercial virtual ma-
chine monitors have existed for several decades for main-
frame computers [8], and have recently begun to achieve
widespread usage on desktop workstations [35]. None
of these virtual machine monitors provide comparable
extensibility and interposition abilities to µDenali.

7.3 Extensibilty and Interposition

Numerous systems have injected novel functionality
at the hardware interface. The storage device interface
has been particularly fruitful. Petal virtual disks [26] of-
fer a block-based 64-bit storage abstraction implemented
on a cluster of workstations. Logical disks [9] provide an
abstract disk interface based on logical block numbers
and block lists, designed to support many different file
system implementations. These systems do not attempt
to be extensible or complete: they provide a fixed imple-
mentation of one virtual hardware device.

Other systems have explicitly dealt with adding
extensibility to the hardware interface. User-mode
pagers [7, 38] can be viewed as interposing on the im-
plementation of the memory abstraction exposed to pro-
cesses or operating systems. In particular, µDenali’s
virtual swap device closely resembles Mach’s extensible
paging for memory regions. µDenali moves beyond these
systems to allow interposition on a much more complete
spectrum of hardware abstractions.

Alpha PALCode [34] provides the ability to modify
or extend the behavior of the Alpha instruction set archi-
tecture. Although this is a powerful primitive, PALCode
faces several severe restrictions. PALcode is designed for
small, low-level handlers such as TLB refills. PALCode
is not suitable for implementing complex abstractions
such as copy-on-write disks. A second limitation is that
PALCode offers no abstraction: PALCode routines are
architecture-dependent and implementation dependent.
Finally, PAL instructions are differentiated from normal
instructions in the instruction set, and therefore, it is
impossible to interpose on arbitrary functionality.

The Java [19] virtual machine architecture is similar
to µDenali at a high level, as it exposes a hardware-
like architecture that is backed by a software-based
implementation. As a result, Java VMs can support
novel implementations, such as a distributed virtual ma-
chines [33]. However, JVMs are less complete than
VMMs. They do not virtualize I/O devices such as Eth-
ernet adapters or disks. As a result, JVMs do not sup-
port software systems with non-Java components. Addi-
tionally, applications such as migration that require the
clean extraction of all I/O device state will be no easier
to implement in a JVM than in a conventional OS.

µDenali’s use of interposition as a means for achiev-
ing extensibility has been used by many previous sys-
tems, including interposition agents [23], Fluke’s recur-
sive virtual machines [16], and Mach’s interposition en-
abled ports [12]. µDenali differs from previous systems
in that we apply interposition to the virtual hardware
interface exposed by a VMM. Thus, the class of applica-
tions and services enabled by µDenali is fundamentally
different from previous systems, whose aim has been to
interpose on the user/kernel boundary of a conventional
operating system.

µDenali’s architecture is similar to that of many
microkernel-based operating systems, such as Mach [1]
and L4 [21]. µDenali’s port-based event routing frame-
work is similar to the IPC mechanisms in these systems.
Modern microkernels are able to run entire operating
systems inside user-mode servers, including L4linux [21].
µDenali differs from microkernels in many respects, pro-
viding the ability to extract full virtual hardware state,
the ability to interpose on all virtual hardware events,
and (currently in design only) the ability to log and



reply non-deterministic events. In spirit, there is little
difference between a microkernel and a VMM; both ex-
pose a virtual machine architecture. In practice, though,
microkernels have been designed to provide extensible
OS services such as user-mode pagers and file systems,
whereas virtual machine monitors are being used to pro-
vide whole-machine services such as consolidation and
migration.

There has been considerable past research into ex-
tensible operating systems [3, 14, 32]. SPIN [3] allows
untrusted operating system extensions written in a type-
safe language to be downloaded into the operating sys-
tem. Unlike SPIN, we do not attempt to graft extensions
into our kernel to override global system policies and
mechanisms, but rather concentrate on extensions local
to a single virtual machine. The Exokernel [14] allows
programmers to build library operating systems that are
safely multiplexed on a thin OS layer that exposes phys-
ical names. Instead of exposing physical names, µDenali
exposes virtual names, sacrificing some performance to
virtualization overhead in return for simplicity and po-
tentially stronger isolation.

8 Conclusions and Future Directions

Virtual machine monitors have proven ideal for im-
plementing a variety of system services, including migra-
tion, intrusion detection, and replay logging. All of these
virtual machine services leverage the unique ability of a
VMM to observe and interpose on the functionality and
state of a complete software system. We believe there are
many compelling applications of VMMs that are waiting
to be discovered.

To facilitate these new services, we have redesigned
the Denali VMM with the explicit goal of extensibil-
ity in mind. The resulting VMM, µDenali, has been
architected to allow parent virtual machines to inter-
pose functionality on behalf of their children. µDenali
is structured on top of an event routing framework in-
spired by Mach ports. Using a high-level C library that
exploits the extensibility features of µDenali, we imple-
mented several virtual device extensions and virtual ma-
chine services that run in our framework, including In-
ternet Suspend/Resume, a “drop-in” network intrusion
detection virtual appliance, and a continuous rejuvena-
tion framework for the Apache web server.

An exciting aspect of µDenali is that its extensibil-
ity mechanisms open up several avenues for future re-
search. We are particularly interested in two future di-
rections: using µDenali’s checkpoint primitives to sim-
plify the management of machines and networks, and
using ReVirt-style logging to monitor for bugs like race
conditions, which are otherwise difficult to analyze.

9 Acknowledgements

We are grateful for the feedback of our shepherd,
Mendel Rosenblum, and our reviewers. We would also
like to thank Brian Bershad, Ed Lazowska, and Hank
Levy for their thoughts. Brian Youngstom’s support in
our lab was invaluable. This work was supported in part
by NSF Career award ANI-0132817, funding from Intel
Corporation, and a gift from Nortel Networks.

References

[1] Mike Accetta, Robert Baron, William Bolosky, David
Golub, Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A new kernel foundation for UNIX devel-
opment. In Proceedings of the USENIX Summer Con-
ference, 1986.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th Symposium on Operating System
Principles(SOSP 2003), Bolton Landing, NY, October
2003.

[3] Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gun Sirer, David Becker, Marc Fiuczynski, Craig
Chambers, and Susan Eggers. Extensibility, safety, and
performance in the SPIN operating system. In Proceed-
ings of the Fifteenth ACM Symposium on Operating Sys-
tem Principles, Dec 1995.

[4] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems, 2(1):39–59, February 1984.

[5] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-
based fault tolerance. ACM Transactions on Computer
Systems, 14(1):80–107, 1996.

[6] E. Bugnion, S. Devine, and M. Rosenblum. Disco: run-
ning commodity operating systems on scalable multipro-
cessors. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, October 1997.

[7] David Cheriton. The V distributed system. Communi-
cations of the ACM, 31(3):314–333, March 1988.

[8] R.J. Creasy. The origin of the VM/370 time-sharing sys-
tem. IBM Journal of Research and Development, 25(5),
1981.

[9] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The logical disk: A new approach to improving
file systems. In Proceedings of the Fourteenth Symposium
on Operating Systems Principles (SOSP’93), Asheville,
NC, December 1993.

[10] Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations. Commu-
nications of the ACM, 9(3):143–155, March 1966.

[11] Jeff Dike. A user-mode port of the Linux kernel. In
Proceedings of the Fourth Annual Linux Showcase and
Conference, Atlanta, GA, October 2000.

[12] Richard Draves. A revised IPC interface. In Proceedings
of the USENIX Mach Conference, October 1990.



[13] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza Basrai, and Peter M. Chen. ReVirt: Enabling in-
trusion analysis through virtual-machine logging and re-
play. In Proceedings of the 2002 Symposium on Operat-
ing Systems Design and Implementation (OSDI 2002),
Boston, MA, December 2002.

[14] D.R. Engler, M.F. Kaashoek, and J. O’Toole Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995.

[15] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A sub-
strate for kernel and language research. In Proceedings of
the 16th ACM Symposium on Operating Systems Prin-
ciples, St.-Malo, France, October 1997.

[16] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull-
mann, Godmar Back, Shantanu Goel, and Steven Claw-
son. Microkernels meet recursive virtual machines. In
Proceedings of the Second Symposium on Operating Sys-
tems Design and Implementation, October 1996.

[17] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosen-
blum, and Dan Boneh. Terra: A virtual machine-based
platform for trusted computing. In Proceedings of the
19th Symposium on Operating System Principles(SOSP
2003), Bolton Landing, NY, October 2003.

[18] Tal Garfinkel and Mendel Rosenblum. A virtual machine
introspection based architecture for intrusion detection.
In Proceedings of the Tenth Annual Network and Dis-
tributed Systems Security Symposium, San Diego, CA,
February 2003.

[19] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, Reading, MA, 1996.

[20] Jim Gray. Why do computers stop and what can be
done about it ? In Proceedings of the 5th Symposium on
Reliablity in Distributed Software and Database systems,
January 1986.

[21] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Se-
bastian Schönberg, and Jean Wolter. The performance
of µ-kernel-based systems. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, St.-
Malo, France, October 1997.

[22] Y. Huang, C. Kintala, and N. Kolettis. Software reju-
venation: analysis, module and applications. In Pro-
ceedings of the 25th International Symposium on Fault-
Tolerant Computing, June 1995.

[23] Michael B. Jones. Interposition agents: Transparently
interposing user code at the system interface. In Proceed-
ings of the 14th ACM Symposium on Operating Systems
Principles (SOSP’93), Asheville, NC, December 1993.

[24] Samuel T. King and Peter M. Chen. Backtracking intru-
sions. In Proceedings of the 19th Symposium on Oper-
ating System Principles(SOSP 2003), Bolton Landing,
NY, October 2003.

[25] M. Kozuch and M. Satyanarayanan. Internet sus-
pend/resume. In Proceedings of the fourth IEEE Work-
shop on Mobile Computing Systems and Applications,
Callicoon, NY, June 2002.

[26] E. K. Lee and C. Thekkath. Petal: Distributed vir-
tual disks. In Proceedings of the Seventh International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[27] J. M. Mellor-Crummey and T. J. LeBlanc. A software
instruction counter. In Proceedings of the 3rd Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Boston, Mas-
sachusetts, April 1989.

[28] D. Mosberger and T. Jin. httperf—a tool for measur-
ing web server performance. In Proceedings of the First
Workshop on Internet Server Performance (WISP ’98),
Madison, WI, June 1998.

[29] J.S. Robin and C.E. Irvine. Analysis of the intel pen-
tium’s ability to support a secure virtual machine mon-
itor. In Proceedings of the 9th USENIX security sympo-
sium, August 2000.

[30] Constantine Sapuntzakis, David Brumley, Ramesh
Chandra, Nickolai Zeldovich, Jim Chow, Monica S. Lam,
and Mendel Rosenblum. Virtual appliances for deploy-
ing and maintaining software. In Proceedings of the
Seventeenth Large Installation Systems Administration
Conference (LISA 2003), October 2003.

[31] Constantine P. Sapuntzakis, Ramesh Chandra, Ben
Pfaff, Jim Chow, Monica S. Lam, and Mendel Rosen-
blum. Optimizing the migration of virtual computers.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI 2002), Boston,
MA, December 2002.

[32] Margo Seltzer, Yasuhiro Endo, Christopher Small, and
Keith Smith. Dealing with disaster: Surviving misbe-
haved kernel extensions, October 1996.

[33] Emin Gun Sirer, Robert Grimm, Arthur J. Gregory, and
Brian N. Bershad. Design and implementation of a dis-
tributed virtual machine for networked computers. In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP’99), Kiawah Island, SC, De-
cember 1999.

[34] Richard L. Sites. Alpha architecture reference manual,
1992.

[35] VMware, Inc. Vmware virtual machine technology.
http://www.vmware.com/.

[36] Andrew Whitaker, Marianne Shaw, and Steven D. Grib-
ble. Scale and Performance in the Denali Isolation Ker-
nel. In Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation (OSDI ’02),
Boston, MA, December 2002.

[37] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: the kernel of a
multiprocessor operating system. Communications of
the ACM, 17(6):337–345, June 1974.

[38] Michael Young, Avadis Tevanian, Richard Rashid,
David Golub, Jeffrey Eppinger, Jonathan Chew,
William Bolosky, David Black, and Robert Baron. The
duality of memory and communication in the implemen-
tation of a multiprocessor operating system. In Pro-
ceedings of the Eleventh ACM Symposium on Operating
Systems Principles, Austin, Texas, November 1987.


