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Abstract
Many of today’s web sites contain substantial amounts of
client-side code, and consequently, they act more like pro-
grams than simple documents. This creates robustness and
performance challenges for web browsers. To give users a
robust and responsive platform, the browser must identify
program boundaries and provide isolation between them.

We provide three contributions in this paper. First, we
present abstractions of web programs and program in-
stances, and we show that these abstractions clarify how
browser components interact and how appropriate program
boundaries can be identified. Second, we identify backwards
compatibility tradeoffs that constrain how web content can
be divided into programs without disrupting existing web
sites. Third, we present a multi-process browser architecture
that isolates these web program instances from each other,
improving fault tolerance, resource management, and perfor-
mance. We discuss how this architecture is implemented in
Google Chrome, and we provide a quantitative performance
evaluation examining its benefits and costs.

Categories and Subject DescriptorsD.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures; D.4.5 [Operating Systems]: Reliability—Fault tol-
erance; H.4.3 [Information Systems Applications]: Com-
munications Applications—Information browsers

General Terms Design, Experimentation, Performance,
Reliability

Keywords Web browser architecture, isolation, multi-process
browser, reliability, robustness
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1. Introduction
Today’s publishers are deploying web pages that act more
like programs than simple documents, and these programs
are growing in complexity and demand for resources. Cur-
rent web browser architectures, on the other hand, are still
designed primarily for rendering basic pages, in that they
do not provide sufficient isolation between concurrently ex-
ecuting programs. As a result, competing programs within
the browser encounter many types of interference that af-
fect their fault tolerance, memory management, and perfor-
mance.

These reliability problems are familiar from early PC op-
erating systems. OSes like MS-DOS and MacOS only sup-
ported a single address space, allowing programs to interfere
with each other. Modern operating systems isolate programs
from each other with processes to prevent these problems.

Surprisingly, web browsers do not yet have a program
abstraction that can be easily isolated. Neither pages nor
origins are appropriate isolation boundaries, because some
groups of pages, even those from different origins, can inter-
act with each other within the browser. To prevent interfer-
ence problems in the browser, we face three key challenges:
(1) finding a way for browsers to identify program bound-
aries,(2) addressing the complications that arise when trying
to preserve compatibility with existing web content, and(3)
rearchitecting the browser to isolate separate programs.

In this paper, we show that web content can in fact be
divided into separate web programs, and we show that sepa-
rate instances of these programs can exist within the browser.
In particular, we consider the relationships between web ob-
jects and the browser components that interact with them,
and we define web program instances based on the access
control rules and communication channels between pages in
the browser. Our goal is to use these abstractions to improve
the browser’s robustness and performance by isolating web
program instances. We find they are also useful for reason-
ing about the browser’s execution and trust models, though
we leave security enhancements as a goal for future work.

We show that these divisions between web program in-
stances can be made without losing compatibility with ex-
isting content or requiring guidance from the user, although
doing so requires compromises. We define a web program as
pages from a givensite (i.e., a collection of origins sharing



the same domain name and protocol), and a web program
instance as asite instance (i.e., pages from a given site that
share a communication channel in the browser). Compati-
bility with existing web content limits how strongly site in-
stances can be isolated, but we find that isolating them can
still effectively address many interference problems.

To better prevent interference between web program in-
stances, we present a browser architecture that uses OS pro-
cesses as an isolation mechanism. The architecture dedicates
one process to each program instance and the browser com-
ponents required to support it, while the remaining browser
components run safely in a separate process. These web pro-
gram processes leverage support from the underlying OS to
reduce the impact of failures, isolate memory management,
and improve performance. As a result, the browser becomes
a more robust platform for running active code from the web.
Web program processes can also be sandboxed to help en-
force some aspects of the browser’s trust model, as we dis-
cuss in a related technical report [Barth 2008].

Google has implemented the architecture described above
in the open source Chromium web browser. The Google
Chrome browser is based on the Chromium source code; we
will refer to both browsers as Chromium in this paper. While
at Google, the first author of this paper helped add support
for site instance isolation to Chromium’s multi-process ar-
chitecture, allowing each site instance to run in a separate
process. While the current implementation does not always
provide strict isolation of pages from different sites, we ar-
gue that it achieves most of the potential benefits and that
strict isolation is feasible.

We evaluate the improvements this multi-process archi-
tecture provides for Chromium’s robustness and perfor-
mance. We find that it provides a more robust and responsive
platform for web programs than monolithic browsers, with
acceptable overhead and compatibility with existing web
content.

The rest of this paper is organized as follows. We present
ideal program abstractions and show how they can be ap-
plied to real web content and browser components in Sec-
tion 2, along with how these abstractions are limited by
backwards compatibility. In Section 3, we present a multi-
process architecture that can isolate these abstractions.We
also describe Chromium’s implementation of the architec-
ture and how it can address concrete robustness problems.
We evaluate the benefits and costs of the architecture in Sec-
tion 4. Finally, we discuss related work in Section 5 and con-
clude in Section 6.

2. Finding Programs in Browsers
Many robustness problems could be solved if indepen-
dent web-based programs were effectively isolated by the
browser’s architecture. Crashes and leaks could be con-
tained, and different programs in the browser could ac-
complish work concurrently. This isolation requires strong
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Figure 1. All web content and browser components share
fate in a single process in monolithic browser architectures,
in contrast to the multi-process architecture in Figure 5.

boundaries between programs, but we currently lack a pre-
cise program abstraction for browsers. As a result, most
browsers have monolithic architectures in which all content
and browser components are combined in one address space
and process (see Figure 1).

Unfortunately, it is challenging to find an appropriate way
to define program boundaries in today’s browsers. Consider
a straw man approach that treats each web page as a sep-
arate program, isolating pages from each other. This ap-
proach breaks many real web programs that have multiple
communicating pages. For example, mapping sites often al-
low a parent page to script a separate map page displayed in
a frame. Similarly, calendar pop-up windows are frequently
used to fill in dates in web forms. Isolating every page would
break these interactions.

Origins are another inadequate straw man. Two copies of
the same page are often independent and can be isolated
from each other, while two pages from partially differing
origins can sometimes access each other. Thus, isolating
pages based solely on origin would be too coarse in some
situations and too fine grained in others.

In this section, we show that it is possible for a browser to
identify program boundaries in a way that lets it isolate pro-
gram instances from each other, while preserving backwards
compatibility. We provide ideal abstractions to capture the
intuition of these boundaries, and we provide concrete defi-
nitions that show how programs can be defined with today’s
content, as summarized in Figure 2. We then discuss the
complications that arise due to the browser’s execution and
trust models, and what compromises are required to main-
tain compatibility with existing content.

2.1 Ideal Abstractions

We first define two idealized abstractions that represent iso-
lated groups of web objects in the browser.
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Figure 2. Ideal abstractions (bold) and concrete definitions
(italic) to identify program instances within browsers.

A web program is a set of conceptually related pages
and their sub-resources, as organized by a web publisher.
For example, the Gmail web program consists of a parent
page, script libraries and images, pages in embedded frames,
and optional pop-out windows for chatting and composing
messages. The browser combines all of these web objects to
form a single coherent program, and it keeps them distinct
from the objects in other web programs.

Web programs are easy to understand intuitively but diffi-
cult to define precisely. Some research proposals have called
for explicit mechanisms that enumerate the components of
each web program [Reis 2007b, Cox 2006], but in this pa-
per we seek to infer web program boundaries from existing
content without help from web publishers or users.

Browsers make it possible to visit multiple copies of a
web program at the same time. For example, a user may
open Gmail in two separate browser windows. In general,
these two copies do not communicate with each other in the
browser, making them mostly independent. We introduce a
second abstraction to capture this: aweb program instance is
a set of pages from a web program that are connected in the
browser such that they can manipulate each other’s contents.
Pages from separate web program instances cannot modify
each other’s contents directly and can be safely isolated.

2.2 Concrete Definitions

The browser can only isolate instances of web programs if it
is able to recognize the boundaries between them. To achieve
this, we show how to concretely define web programs using
sites, and how to define web program instances usingsite
instances.

Sites The browser already distinguishes between unrelated
pages with its access control rules, using the Same Origin
Policy [Ruderman 2001]. This policy permits some pages to
communicate within the browser, so any practical program
boundaries must take it into account. To reflect this, we

define web programs based on which pages may be able to
access each other.

Taking this approach, pages permitted to interact should
be grouped together into web programs, while pages that are
not should be isolated from each other. We focus on pages
and not other types of web objects because the Same Ori-
gin Policy bases its access control decisions on the origin
(i.e., protocol, full host name, and port) of each page. Sub-
resources in a page, such as script libraries, are governed
based on the origin of their enclosing page, not their own
origin. Note that pages loaded in frames are considered sepa-
rate from their parent pages, both by the Same Origin Policy
and by our definitions.

When pages are allowed to interact, they do so by ac-
cessing each other’s Document Object Model (DOM) trees.
DOM trees provide a representation of each page’s contents
that can be manipulated by script code. Within the browser,
particular components are responsible for supporting thisbe-
havior and enforcing access control. The HTML rendering
component generates DOM trees from pages. Script code
runs within the JavaScript engine and can only interact with
these trees via the DOM bindings component, which acts
as a reference monitor. The bindings allow a page’s code to
manipulate and call functions in other pages from the same
origin. If the origins do not match, the code is denied ac-
cess to the page’s DOM tree and can only use a small API
for managing the page’s window or frames. This means that
pages from different origins can generally be isolated from
each other.

However, origins do not provide perfect program bound-
aries because a page can change its origin at runtime.
That is, a page’s code can modify itsdocument.domain
property, which the DOM bindings use for access con-
trol checks. Fortunately, this property can only be modified
within a limited range: from sub-domains to more general
domains (e.g., froma.b.c.com to c.com) and only up to
the “registry-controlled domain name.” A registry-controlled
domain name is the most general part of the host name
before the public suffix (e.g.,.com or .co.uk) [Mozilla
2007]. Note that any port specified in a URL (e.g., 8080 in
http://c.com:8080) becomes irrelevant for access con-
trol checks when a page changes its origin, so pages served
from different ports may also access each other.

Since a page’s origin can change, we instead define a web
program based on the range of origins to which its pages may
legally belong. We denote this as asite: the combination of a
protocol and registry-controlled domain name. Sites provide
a concrete realization of the web program abstraction. Pages
from the same site may need the ability to access and modify
each other within the browser, while pages from different
sites can be safely isolated from each other.

While effective and backwards compatible, using sites for
isolation does represent a somewhat coarse granularity, since
this may group together logically independent web programs



hosted on the same domain. We discuss the implications of
this further in Section 2.4.

Browsing Instances Defining web program instances re-
quires knowing which pages share communication chan-
nels inside the browser. A page can only access the con-
tents of other pages if it has references to them, and the
browser’s DOM bindings only provide such references in
certain cases. Thus, we must consider how groups of com-
municating pages are formed.

DOM-based communication channels actually arise be-
tween the containers of pages: windows1 and frames. We
say two such containers areconnected if the DOM bindings
expose references to each other. This occurs if a page opens
a second window, where the first page is returned a refer-
ence to the second, and the second can access the first via
window.opener. This also occurs if a child frame is em-
bedded in a parent page, where they become accessible via
window.frames andwindow.parent. Connections match
the lifetime of the container and not the page: if a window
or frame is navigated to a different page, it will still have a
reference to its parent or opener window.

These persistent connections imply that we can divide
the browser’s page containers into connected subsets. We
define a set of connected windows and frames as abrowsing
instance, which matches the notion of a “unit of related
browsing contexts” in the HTML 5 specification [Hickson
2008]. New browsing instances are created each time the
user opens a fresh browser window, and they grow each
time an existing window creates a new connected window or
frame, such as a chat window in Gmail. Because browsing
instances are specific to containers and not pages, they may
contain pages from multiple web programs (i.e., sites).

In current browsers, named windows are another way
to obtain a reference to a page’s container. A page can
attempt to open a new window with a given name, and if
the browser finds an existing window with the same name, it
can return a reference to it instead of creating a new window.
In theory, this allows any two windows in the browser to
become connected, making it difficult to isolate browsing
instances. However, this feature is not covered in the HTML
4 specification, and its behavior is left to the user agent’s
discretion in HTML 5. Specifically, browsers are permitted
to determine a reasonable scope for window names [Hickson
2008]. To allow web program instances to be isolated, we
recommend shifting from a global namespace for windows
to a separate namespace for each browsing instance. This
change will have little impact on most browsing behavior,
and it more intuitively separates unrelated windows in the
browser.

Pages do share some other communication channels in
the browser, but not for manipulating DOM trees. For ex-
ample, pages from the same origin may access a common

1 We consider windows and tabs equivalent for this purpose.
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Figure 3. We divide web content into independent site in-
stances, based on the sites of pages (e.g., A, B, C) and the
connections between page containers (horizontal gray lines).

set of cookies using the browser’s storage component. Such
channels can continue to work even if browsing instances are
isolated from each other.

Site Instances We can further subdivide a browsing in-
stance into groups of pages from the same web program,
for a concrete realization of a web program instance. Specif-
ically, we define asite instance as a set of connected, same-
site pages within a browsing instance. Since all pages within
a browsing instance are connected, there can be only one site
instance per site within a given browsing instance.

We show an example of how web content in the browser
can be divided into browsing instances and site instances in
Figure 3. Each site instance contains pages from a single
site but can have sub-resources from any site. All pages in a
browsing instance can reference each other’s containers, but
only those from the same site share DOM access, as shown
by the solid and dashed gray lines between pages.

Note that the same site can have multiple site instances in
separate browsing instances (e.g., site A). In this case, pages
from different site instances have no references to each other.
This means that they have no means to communicate, even
though the Same Origin Policy would allow them to.

Similarly, a single browsing instance may contain site
instances from different sites (e.g., sites A and C). In this
case, pages in different site instances do have references to
each other, but the Same Origin Policy does not allow them
to access each other’s DOM trees.

In both cases, pages in separate site instances are inde-
pendent of each other. This means that site instances can be
isolated from each other in the browser’s architecture with-
out disrupting existing web content.

It is also worth noting that the browsing instance and site
instance boundaries are orthogonal to the groupings of win-
dows and tabs in the browser. It is unfortunately not possi-
ble to visually identify a browsing instance by looking at a
set of browser windows, because a single window may con-
tain tabs from different browsing instances. This is because
a single browsing instance may have connected tabs in sep-



arate windows. This is especially true in browsers that allow
tabs to be dragged to different windows, such as Chromium.
As a result, the browser’s user interface does not reflect the
boundaries between web program instances.

Summary With these concrete definitions, we have identi-
fied precise boundaries between groups of web objects in the
browser. We use sites as a proxy for web programs, based
on whether documents can access each other. We use site
instances as a proxy for web program instances, based on
whether those documents’ containers (e.g., windows) can ac-
cess each other. Each of these definitions can act as an archi-
tectural boundary in the browser, with various strengths that
we discuss in Section 3.2.

2.3 Practical Complications

Some aspects of the browser’s runtime environment present
constraints and complications that affect how site instances
can be implemented and isolated from each other. For ex-
ample, isolating site instances for security is desirable,but
this is difficult to achieve without changing the behavior of
web content. In this section, we show how the execution
model for web programs suggests using a single thread and
address space for all code within a site instance, and how
the browser’s trust model prevents site instances from being
perfectly isolated.

2.3.1 Execution Model

Web program execution primarily involves two tasks: page
rendering and script execution. These tasks are interleaved
as an HTML page is parsed, and both tasks can result in
DOM tree mutations. The browser presents a single threaded
view of these events to avoid concurrent modifications to the
DOM. This is partly necessary because JavaScript is a single
threaded language with no concurrency primitives, and it
suggests that a given page’s rendering and script execution
should be implemented on a single thread of execution.

Moreover, communicating pages within a site instance
have full access to each other’s DOM tree values and script
functions. Because there are effectively no boundaries be-
tween these pages, it is important that no race conditions
occur during their code’s execution. We find that such race
conditions are unfortunately possible in the Internet Explorer
and Opera browsers, which both execute different windows
in different threads, even if their pages can access each other.

To prevent concurrent DOM modifications and provide
a simple memory model for shared DOM trees, we recom-
mend that browser architectures place all web objects for
a site instance, as well as their supporting browser compo-
nents, into a single address space with a single thread of ex-
ecution.

2.3.2 Trust Model

The trust model of the browser reveals the extent to which
site instances can be isolated, because it defines how web ob-

jects can interact. We now consider how credentials can spe-
cialize a web program for a user, and how the browser tries to
prevent the resulting confidential information from flowing
into other web programs. We find that site instance bound-
aries alone are not sufficient for enforcing the browser’s trust
model, so we cannot yet rely on them for security.

Credentials Many web programs, such as mail or banking
sites, are only useful when specialized for individual users.
Browsers provide several credential mechanisms (e.g., cook-
ies, client certificates) that allow sites to identify userson
each request. As a result, these web programs may contain
confidential information that should not leak to other web
programs. We refer to the combination of a web program
and the user’s credentials as aweb principal.

In most cases, sites give credentials to the browser after
the user has authenticated (e.g., using a password). The main
challenge is that browsers attach credentials to each request
based solely on the destination of the request and not which
web program instance is making the request. Thus, sites are
usually unable to distinguish between a user’s site instances
on the server side. As a result, site instances from the same
site can only be partly isolated in the browser; they have
independent DOM trees but share credentials.

Information Flow Given that both web principals and
other resources on the user’s computer may contain con-
fidential information, the browser’s trust model must ensure
that this information does not leak into the wrong hands.
In terms of information flow, the browser must prevent any
confidential information from flowing into an unauthorized
site instance, because it places no restrictions on what infor-
mation can flow out.

Specifically, a site instance can send information to any
site, because the browser permits it to embed sub-resources
from any site. A site instance can simply encode informa-
tion in the HTTP requests for sub-resources, either as URL
parameters, POST data, or in the URL path itself.

As a result, today’s browsers must already take steps to
prevent information from other web principals or from the
user principal (i.e., the resources outside the browser to
which the user has access) from flowing into a web principal.

To protect the user principal, the browser abstracts away
the user’s resources and denies access to local files and de-
vices. These restrictions reflect the fact that web programs
are not granted the same level of trust as installed applica-
tions and should not have the same privileges.

The browser faces a harder challenge to protect web prin-
cipals. This is because site instances are free to embed sub-
resources from any site. These sub-resources carry creden-
tials based on their own origin, not the origin of their en-
closing page (unlike the access control rules described in
Section 2.2). Such sub-resources may therefore contain in-
formation to which the site instance should not have access.
For example, if a user logs into a bank in one site instance
and visits an untrusted page in another, the untrusted page



can request authenticated objects from the bank’s site. This
is an instance of the confused deputy problem [Hardy 1988],
and it can lead to cross-site request forgery attacks for sites
that do not defend against it [Watkins 2001].

In practice, today’s browsers try to keep sub-resources
opaque to their enclosing page, to prevent such information
from flowing into the site instance. For example, script li-
braries can be executed but not directly read by a page’s
code, and a page’s code cannot access the contents of bi-
nary objects like images. Pages also cannot transmit sub-
resources back to their own site.

The consequence of this is that the browser must rely
on subtle logic in its components, such as the script engine
and DOM bindings, to maintain its trust model. Effectively
isolating site instances is not sufficient, since a single site
instance may include code or objects which its own pages
should not be allowed to access.

2.4 Compromises for Compatibility

The practical constraints discussed above demonstrate the
challenges for isolating web program instances in the browser
in a compatible way. We conclude Section 2 by discussing
the main compromises needed to maintain backwards com-
patibility, which is a critical goal for products like Chromium
that seek adoption by real web users. These compromises
permit compatibility but hold us back from perfectly isolat-
ing web program instances and their confidential informa-
tion.

Coarse Granularity Our use of sites to define web pro-
grams represents one compromise. A site likegoogle.com

may host many logically separate applications (e.g., search,
mail, etc.), perhaps even on different sub-domains. How-
ever, the architecture can only identify these as part of the
google.com site. Any two pages from the same site instance
could legally access each other, so we cannot isolate them a
priori. Fortunately, this coarse granularity of web programs
is offset by the fact that separate instances can be isolated.
Thus, mail and map programs from the same site need not
share fate, if the user opens them in separate browsing in-
stances.

Imperfect Isolation A second compromise is that site in-
stances cannot be fully isolated, for two reasons. First, a
small subset of the DOM API is not subject to the Same
Origin Policy, so site instances within a browsing instance
are not entirely independent. This API is shown in Figure 4
and mainly allows a page to access properties of connected
windows and frames, without reaching into the contents of
their pages. Fortunately, it can be implemented without in-
teracting with the DOM trees of different site instances, al-
lowing them to be placed in different address spaces. Sec-
ond, multiple site instances from the same site share creden-
tials and other storage, such as cached objects. As a result,
the browser’s storage component can at best be partitioned
among sites, not site instances.
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history.back, history,forward, history.go,

location.reload, location.replace, 

location.assign
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closed, frames, history, length, opener, 

self, top, window

location, location.href

Readable 
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Properties

Figure 4. Properties and methods of thewindow object that
can be accessed by cross-site pages in the same browsing
instance.

Sub-Resource CredentialsIdeally, the information con-
tained in web principals could be strongly isolated, but
the browser’s policies for sub-resources and credentials re-
quire another compromise. For example, the architecture
could prevent one web principal from using another web
principal’s credentials when requesting sub-resources. This
approach would reduce the importance of keeping sub-
resources within a site instance opaque, since they would not
contain another web principal’s sensitive information. Un-
fortunately, since credentials are currently included based
only on the destination of a request, this may break some
mashup sites that depend on embedding authenticated sub-
resources from other sites. Thus, we let the browser rely
on components like the DOM bindings to keep these sub-
resources opaque.

Overall, we find that compatibility does tie our hands, but
we can still provide architectural improvements to browsers
by making reasonable compromises. We choose a coarse
granularity for web programs, we require shared credentials
and a small API between site instances, and we limit our
ambitions for securely isolating web principals.

3. Using Processes to Isolate Web Programs
In the previous section, we showed how the browser can be
divided into independent instances of web programs, without
sacrificing compatibility with existing web sites. However,
most current browsers employ the monolithic architecture
shown in Figure 1, combining all web program instances and
browser components into a single operating system process.
This leads to interference between web program instances in
the form of fault tolerance, accountability, memory manage-
ment, and performance.

In this section, we present a multi-process browser ar-
chitecture that attempts to isolate these instances and their
supporting browser components to significantly reduce pro-
gram interference. We show how the Google Chrome team
has implemented such an architecture (with some caveats) in
the Chromium browser, and we discuss how the architecture
can provide specific robustness benefits.
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3.1 A Multi-Process Browser Architecture

We first show how to divide the browser’s components be-
tween different operating system processes to isolate web
program instances from each other. We choose OS processes
as an isolation mechanism to leverage their independent ad-
dress spaces and OS-supported scheduling and parallelism.
We define three types of processes to isolate the browser’s
components and explain why certain components belong in
each type. Our architecture is shown in Figure 5.

Rendering Engine We create a rendering engine process
for each instance of a web program. This process contains
the components that parse, render, and execute web pro-
grams. The HTML rendering logic belongs here, as it has
no dependencies between instances and contains complex
code that handles untrusted input. The DOM trees it pro-
duces similarly belong in this process, to keep the pages of
a site instance together but those of different instances iso-
lated. The JavaScript engine and the DOM bindings connect-
ing it to the DOM trees are also placed here. These compo-
nents share a single thread for rendering and script execution
within a web program instance, but distinct instances can run
on separate threads in separate processes. As we discuss in a
separate report on Chromium’s security architecture [Barth
2008], these processes can also be sandboxed to remove un-
necessary privileges like filesystem access.

Browser Kernel We place most of the remaining browser
components in a single process known as the browser ker-
nel. All storage functionality (e.g., cookies, cache, history)
is shared among instances of a web program and requires
filesystem privileges, so it is placed in this process. The net-
work stack is also privileged and can be shared among in-
stances. Finally, the logic for managing the browser’s user

interface belongs in this process, as it is independent of the
execution of web program instances.

Plug-ins We can introduce a third process type for running
browser plug-ins like Adobe Flash, since plug-ins are effec-
tively black boxes to the rest of the browser. Plug-in com-
ponents could be loaded into each rendering engine process
that needs them, but the Google Chrome team points out that
this causes two problems [Google 2008c]. First, many plug-
ins require privileges that are stripped from sandboxed ren-
dering engine processes, such as filesystem access. Second,
it would let a third party plug-in cause crashes in web pro-
gram instances. Placing plug-ins in a separate process avoids
these problems, preserving compatibility with existing plug-
ins but losing potential security benefits of sandboxing them.
Also, creating one plug-in process for each type of active
plug-in avoids overhead from running multiple instances of
a given plug-in component.

Using this architecture, instances of web programs can be
safely run in separate processes from the rest of the browser
without losing compatibility with existing content.

3.2 Implementation in Chromium

The Google Chrome team has implemented such an archi-
tecture in the Chromium web browser. Chromium’s imple-
mentation isolates site instances using separate rendering en-
gine processes. It also supports several other models for as-
signing web content to processes, based on the definitions
from Section 2.2. We discuss these models below to reveal
their implementation requirements and properties, and we
then present caveats in Chromium’s current implementation.
Users can choose between the models with command line
arguments, as documented online [Google 2008d].

• Monolithic: Chromium is designed to use separate pro-
cesses for the browser kernel, rendering engines, and
plug-ins, but it is capable of loading each of these com-
ponents in a single process. This model acts as a baseline
for comparisons, allowing users to evaluate differences
between browser architectures without comparing imple-
mentations of different browsers.

• Process-per-Browsing-Instance:Chromium’s simplest
multi-process model creates a separate rendering en-
gine process for each browsing instance. Implementing
this model requires mapping each group of connected
browser tabs to a rendering engine process. The browser
kernel must display the process’s output and forward user
interactions to it, communicating via IPC. Frames can al-
ways be handled in the same process as their parent tab,
since they necessarily share a browsing instance.

A browsing instance, and thus a rendering engine pro-
cess, is created when the user opens a new tab, and it
grows when a page within the browsing instance creates
a new connected tab. Chromium maintains the orthogo-
nality between browsing instances and the visual group-



ings of tabs, allowing connected tabs to be dragged to
different windows.

While this model is simple and provides isolation be-
tween pages in unconnected windows, it makes no effort
to isolate content from different sites. For example, if the
user navigates one tab of a browsing instance to a differ-
ent web site than the other tabs, two unrelated web pro-
gram instances will end up sharing the rendering engine
process. This process model thus provides some robust-
ness but does not isolate web program instances.

• Process-per-Site-Instance:The above process model
can be refined to create a separate renderer process for
each site instance, providing meaningful fate sharing and
isolation for each web program instance. This model pro-
vides the best isolation benefits and is used in Chromium
by default.

To implement this, Chromium supports switching a tab
from one rendering process to another if the user nav-
igates it to a different site. Ideally, Chromium would
strictly isolate site instances by also rendering frame
pages in processes determined by their site. This is not
yet supported, as we discuss in the caveats below.

• Process-per-Site: As a final but less robust model,
Chromium can also consolidate all site instances from
a site and simply isolate web programs, rather than web
program instances. This model requires extra implemen-
tation effort to ensure that all pages from the same site
are rendered by the same rendering engine process, and
it provides less robustness by grouping more pages to-
gether. However, it still isolates sites from each other,
and it may be useful in low resource environments where
the overhead of additional processes is problematic, be-
cause it creates fewer rendering engine processes than
process-per-site-instance.

Caveats Chromium’s current implementation does not yet
support strict site isolation in the latter two process models.
There are several scenarios in which a single rendering en-
gine process may host pages from multiple sites, although
this could be changed in future versions.

This is partly because Chromium does not yet support
the API permitted between windows showing different sites
(from Figure 4), if those windows are rendered by different
processes. We argue that supporting this API in Chromium
is feasible, but until the support is implemented, Chromium
should avoid breaking sites that may depend on the API. It
does so by limiting the cases in which a tab is switched to
a new rendering engine process during navigations, so that
the API calls can complete within the same process. Specif-
ically, it does not swap a tab’s process for navigations initi-
ated within a page, such as clicking links, submitting forms,
or script redirects. Chromium only swaps processes on nav-
igations via the browser kernel, such as using the location
bar or bookmarks. In these cases, the user has expressed a

more explicit intent to move away from the current page, so
severing script connections between it and other pages in the
same browsing instance is acceptable.

Similarly, Chromium does not yet render frames in a sep-
arate process from their parents. This would be problematic
if secure isolation of site instances were a goal, but it is suf-
ficient for achieving robustness goals.

Chromium also places a limit on the number of renderer
processes it will create (usually 20), to avoid imposing too
much overhead on the user’s machine. This limit may be
raised in future versions of the browser if RAM is plentiful.
When the browser does reach this limit, existing rendering
engine processes are re-used for new site instances.

Future versions could resolve these caveats to provide
strict isolation of pages from different sites. Nonetheless, the
current implementation can still provide substantial robust-
ness benefits in the common case.

3.3 Robustness Benefits

A multi-process browser architecture can address a number
of robustness problems that afflict current browsers, includ-
ing fault tolerance, accountability, memory management,
and performance issues. We discuss how the architecture
is relevant for these problems, and how Chromium further
leverages it for certain security benefits.

Fault Tolerance Faults in browser components or plug-ins
are unfortunately common in these complex and evolving
codebases, and they typically lead to a crash in the process
where they occur. The impact of such a crash depends on
both the browser architecture and which component is re-
sponsible.

In monolithic browsers, a crash in any component or
plug-in will lead to the loss of the entire browser. To mit-
igate this, some browsers have added session restore fea-
tures to reload lost pages on startup. However, users may still
lose valuable data, such as purchase receipts or in-memory
JavaScript state. Also, web programs that cause determin-
istic crashes may prevent such browsers from restoring any
part of a session, since the browser will crash on each restore
attempt. We have encountered this situation in practice.

In a multi-process architecture, many crashes can be con-
fined to have much lower impact. Crashes in a rendering
engine component, such as HTML renderers or JavaScript
engines, will only cause the loss of one rendering engine
process, leaving the rest of the browser and other web pro-
gram instances usable. Depending on the process model in
use, this process may include pages from a single site in-
stance, site, or browsing instance. Similarly, plug-in compo-
nents can be isolated to prevent plug-in crashes from taking
the rest of the browser with them.

Note that crashes in browser kernel components, such as
storage or the user interface, will still lead to the loss of the
entire browser. However, in a related technical report [Barth
2008], we find that over the past year, the rendering engine



components of popular browsers contained more complexity
and had twice as many vulnerabilities as the browser kernel
components. Thus, tolerating failures in the rendering engine
will likely provide much of the potential value.

Accountability As web pages evolve into programs, their
demands for CPU, memory, and network resources grow.
Thus, resource accounting within the browser becomes im-
portant for locating misbehaving programs that cause poor
performance. In a monolithic browser, the user can typically
only see resource usage for the entire browser, leaving him
to guess which web program instances might be responsible.
In multi-process architectures, resource usage for each pro-
cess is available from the OS, allowing users to accurately
diagnose which web program instances are to blame for un-
reasonable resource usage.

Memory Management Web program instances can also
interfere with each other in monolithic browsers in terms
of memory management. Browsers tend to be much longer-
lived than web program instances, so a monolithic browser
must use a single address space to execute many independent
programs over its lifetime. Heavy workloads and memory
leaks in these web program instances or in their supporting
components can result in a large and fragmented heap. This
can degrade performance and require large amounts of mem-
ory, and it can lead to large challenges for browser devel-
opers that seek to reduce memory requirements [Parmenter
2008]. In contrast, placing each web program instance and
the components supporting it in a new process provides it a
fresh address space, which can be disposed when the pro-
cess exits. This simplifies memory reclamation and isolates
the memory demands of web program instances.

Performance Performance is another concern as the code
in web programs becomes more resource demanding. In
monolithic browsers, a web program instance can interfere
with the performance of both unrelated web programs and
the browser itself. This occurs when separate instances are
forced to compete for CPU time on a single thread, and also
when the browser’s UI thread can be blocked by web pro-
gram actions, such as synchronousXmlHttpRequests. This
is most evident in terms of responsiveness, where a large or
misbehaving program instance can cause user-perceived de-
lays in other web programs or the browser’s UI. By isolating
instances, a multi-process architecture can delegate perfor-
mance and scheduling issues to the OS. This allows web pro-
gram instances to run in parallel, improving responsiveness
and taking advantage of multiple cores when available.

Security The browser’s process architecture can also be
used to help enforce security restrictions, although this is
not the main focus of this paper. Monolithic architectures
rely entirely on the logic in browser components, such as
the DOM bindings, to enforce the trust model we discuss in
Section 2.3.2. However, bugs may allow malicious web pro-

grams to bypass this logic, letting attackers install malware,
steal files, or access other web principals.

In a recent report, we have shown how Chromium lever-
ages its multi-process architecture to help enforce isolation
between the user principal and web principals [Barth 2008].
Chromium uses sandboxes that restrict rendering engine pro-
cesses from accessing the filesystem and other resources,
which can help protect the user principal if a rendering en-
gine is compromised.

It is also desirable to architecturally isolate web princi-
pals, to help prevent exploited rendering engines from steal-
ing or modifying information in other web principals. As
we discuss in Section 2.4, compatibility poses challenges
for this because site instances can embed sub-resources from
any site with the user’s credentials. The architecture provides
little benefit if confidential sub-resources are loaded by a ma-
licious page in a compromised rendering engine. Thus, we
leave a study of secure isolation of web principals to future
work.

4. Evaluation
In this section, we evaluate the benefits and costs of mov-
ing from a monolithic to a multi-process architecture in the
Chromium browser. We first demonstrate how this change
improves robustness in terms of fault tolerance, accountabil-
ity, and memory management. We then ask how the architec-
ture impacts Chromium’s performance, finding many advan-
tages despite a small penalty for process creation. Finally,
we quantify the memory overhead for the architecture and
discuss how Chromium satisfies backwards compatibility.

Note that Chromium makes it possible to directly com-
pare browser architectures by selecting between the mono-
lithic mode and the process-per-site-instance mode using
command line flags. We take this approach rather than com-
paring different web browsers to avoid capturing irrelevant
implementation differences in our results.

Our experiments are conducted using Chromium 0.3.154
on a dual core 2.8 GHz Pentium D computer running Win-
dows XP SP3. We use multi-core chips because they are
becoming increasingly prevalent and can exploit the paral-
lelism between independent web programs. All of the net-
work requests in our tests were played back from disk from a
previously recorded browsing session to avoid network vari-
ance in the results.

4.1 Is multi-process more robust?

We first use real examples to demonstrate that the multi-
process architecture can improve Chromium’s robustness.

Fault Tolerance We verified that crashes in certain browser
components can be isolated in multi-process architectures.
Chromium supports a built-in “about:crash” URL that
simulates a fault in a rendering engine component. In mono-
lithic mode, this causes the loss of the entire browser. In
Chromium’s multi-process architecture, only a single ren-



Workload Monolithic Multi-Process
Alone 9 (14) 4 (6)
With Top 5 Pages 1408 (2536) 6 (7)
With Gmail 3307 (5590) 6 (7)

Table 1. Average and worst case delay (in milliseconds)
observed when interacting with a loaded page while other
pages are loading or running.

dering engine process is lost. Any pages rendered by the
process are simply replaced with an error message while
the rest of the browser continues to function. Similarly, ter-
minating a plug-in process in Chromium causes all plug-in
instances (e.g., all Flash movies) to disappear, but the pages
embedding them continue to operate.

Accountability Chromium’s multi-process architecture al-
lows it to provide a meaningful Task Manager displaying the
CPU, memory, and network usage for each browser process.
This helps users diagnose problematic site instances. In one
real world scenario, we found that browsing two photo gal-
leries caused the browser’s memory use to grow consider-
ably. In monolithic mode, Chromium’s Task Manager could
only report 140 MB of memory use for the entire browser,
but in process-per-site-instance mode we could see that one
gallery accounted for 104 MB and the other for 22 MB. This
gave us enough information to close the problematic page.

Memory Management Many real web programs present
heavy memory demands today, and leaks can occur in
both web pages and browser components. For example,
the image gallery mentioned above presents a heavy work-
load, while a recent bug in Chromium caused a rapid
memory leak when users interacted in certain ways with
news.gnome.org [Google 2008a]. In both cases, Chromium’s
multi-process architecture quickly reclaims the memory
used by the offending site instance when its windows are
closed, simply by discarding the process’s address space.
In contrast, the monolithic architecture continues to hold
the allocated memory after offending windows are closed,
only slowly releasing it over time as the browser’s process
attempts to free unused resources at a finer granularity.

4.2 Is multi-process faster?

A multi-process architecture can impact the performance of
the browser because it allows site instances to run in par-
allel. We measure three aspects of the architecture’s impact
on Chromium’s performance: the responsiveness of site in-
stances, the speedups when multiple instances compute con-
currently, and the latency introduced by process creation.

ResponsivenessTo test the browser’s responsiveness, we
look at the user-perceived latency for interacting with a page
while other activity is occurring in the browser. Specifically,
we inserted code into the browser kernel to measure the
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Figure 6. Solid lines show the total load time for restoring
a session of realistic pages. Dotted lines show the time until
at least one of the restored pages is usable. Both lines for the
monolithic architecture overlap.

time interval between right-clicking on a page and the cor-
responding display of the context menu. This processing is
handled by the same thread as rendering and script execu-
tion, so it can encounter contention as other pages load or
compute. We perform a rapid automated series of 5 right
clicks (500 ms apart) on a loaded blank page while other
workloads are in progress. These workloads include load-
ing the 5 most popular web pages according to Alexa [Alexa
2008], and loading an authenticated Gmail session. We re-
port both the average and worst case latencies in Table 1,
comparing Chromium’s monolithic and multi-process archi-
tectures.

The monolithic architecture can encounter significant
delays while other pages are loading or computing. Such
“thread capture” may occur if the rendering and script com-
putations performed by other pages prevent the active page
from responding to events. The multi-process architecture
completely masks these delays, keeping the focused page
responsive despite background activity.

Speedup In some cases, multiple web program instances
have enough pending work that considerable speedups are
possible by parallelizing it, especially on today’s multi-core
computers. Speedups can occur when several pages are load-
ing at once, or when pages in the background perform script
operations while the user interacts with another page.

We consider the case of session restore, in which the
browser starts up and immediately loads multiple pages from
a previous session. Our test loads sessions containing be-
tween 1 and 5 Google Maps pages in different tabs, and we
report the time taken for all pages to finish loading, based



Sta
rtu

p

New
 T

ab

Nav
iga

tio
n

0

100

200

300

La
te

nc
y 

(m
s)

Monolithic
Multi-Process

(a) Blank Page

Sta
rtu

p

New
 T

ab

Nav
iga

tio
n

0

2000

4000

6000

8000

(b) News Page

Figure 7. Latency for browser startup, tab creation, and a
cross-site navigation, for both (a) a blank page and (b) a
popular news page. Each task creates a process in the multi-
process architecture.

on measurements recorded within the browser. We compare
results for Chromium’s monolithic and multi-process archi-
tectures.

We also report the time until at least one of the pages
becomes usable (i.e., responds to input events). In the mono-
lithic case, this occurs when the last page finishes loading,
because each loading page interferes with the others. For
multi-process, we found we could interact with the first page
as soon as it finished.

Our results are shown in Figure 6. On a dual core com-
puter, the multi-process architecture can cut the time to fully
load a session to less than half, and it allows users to begin
interacting with pages substantially sooner.

Latency Although a multi-process browser architecture
brings substantial benefits for responsiveness and speedups,
it can also impose a latency cost for process creation. We use
code in the browser to measure this latency for Chromium’s
monolithic and multi-process architectures in three com-
mon scenarios, each of which creates a process: starting the
browser with a page, opening a page in a new tab, and nav-
igating to a different site in a given tab. We present results
for both a blank page and a popular news site, to put the
additional latency in context.

Figure 7 shows the results. Startup times can actually im-
prove for both pages in the multi-process architecture, be-
cause the browser kernel and rendering engine can initialize
in parallel. For the blank page, new tab creation and cross-
site navigations incur about a 100 ms penalty in the multi-
process browser, due to process creation. As seen in Fig-
ure 7 (b), this is more than offset by speedups offered by the
multi-process architecture. Such speedups are possible be-
cause the browser kernel must also perform computations to
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Figure 8. Memory overhead for loading additional blank or
realistic pages in new tabs.

render a page, such as cache and network request manage-
ment, which can run in parallel with the rendering engine.

4.3 What is the overhead for multi-process?

Moving to a multi-process browser architecture does incur
a cost in terms of memory overhead. Each rendering engine
process has its own copies of a set of browser components,
causing the footprint of a new site instance to be larger than
simply the footprint of the pages it contains.

Measuring this overhead poses a challenge because mul-
tiple browser processes may share large amounts of mem-
ory [Google 2008b]. We attempt to avoid double-counting
this memory in our measurements. Specifically, the physical
memory we report includes the private bytes and shareable
(but not actually shared) bytes allocated by all browser pro-
cesses, plus an approximation of the amount of shared mem-
ory. This approximation is the sum of each browser process’s
shared bytes divided by the number of processes.

Using this metric, we report the physical memory sizes of
the monolithic and multi-process architectures after loading
a number of pages in separate tabs. We consider the foot-
prints of both blank pages and a set of the 10 most popular
pages, as reported by Alexa.

Our results are shown in Figure 8. The blank page tests
for the monolithic architecture show some variability, due
to unrelated memory reclamations after browser startup. We
confirmed this hypothesis by introducing page activity be-
fore running the tests, which eliminated the variability. We
do not include this initial activity in our actual tests because
it is biased against monolithic mode, which cannot reclaim
the memory as easily as multi-process mode.

As expected, the multi-process architecture requires more
memory per site instance than the monolithic architecture.
For blank pages, the average site instance footprint rises
from 0.38 MB to 1.7 MB between architectures. For popular



pages, it rises from 3.9 MB to 10.6 MB. The greater disparity
in this case is likely due to caches and heaps that must be
instantiated in each rendering engine as pages execute.

These footprints may vary widely in practice, depend-
ing on web program complexity. Many typical machines,
though, have upwards of 1 GB of physical memory to ded-
icate to tabs, supporting a large number of average pages
in either architecture: 96 in multi-process mode compared
to 263 in monolithic mode. Also note that Chromium cur-
rently creates at most 20 rendering engine processes and then
reuses existing processes, as discussed in Section 3.2.

4.4 Does multi-process remain compatible?

The multi-process architecture is designed to be compat-
ible with existing web sites, as discussed in Section 2.
Chromium’s implementation also uses the WebKit render-
ing engine that is shared by Safari and other browsers, to
avoid introducing a new engine for web publishers to test
against. We are aware of no compatibility bugs for which
the architecture, not the implementation, is responsible.

Nonetheless, both the architecture and Chromium’s im-
plementation exhibit some minor differences from mono-
lithic browsers that may be observed in uncommon circum-
stances. Because of the shift from a global namespace for
window names to a per-browsing-instance namespace, it is
possible to have multiple windows with the same name.
For example, the Pandora music site allows users to open
a small player window. If a player window is already open,
attempting to open another player from a second browsing
instance will simply refresh the current player in monolithic
browsers, but it will open a second player window in multi-
process browsers. This is arguably a logical choice, as the
user may consider the two browsing instances independent.

Chromium’s implementation also does not yet support
cross-process calls for the small JavaScript API that is per-
mitted between page containers from different origins. As
discussed in Section 3.2, Chromium attempts to keep such
pages in the same process when they might try to communi-
cate with this API. In practice, this is unlikely to affect many
users, since most inter-window communication is likely to
occur between pages from the same site.

5. Related Work
Existing browsers limit the script interactions between web
program instances but face many robustness challenges
without additional architectural support. Researchers have
proposed some improved architectures, but they often do so
at the expense of compatibility with existing content. Our
work differs in that it automatically identifies and isolates
web instances without disrupting existing content.

Monolithic Browsers Many existing web browsers use a
monolithic architecture, which we have shown to be prone
to robustness and performance problems. Some popular
browsers (e.g., Firefox, Safari) run in a single process. Oth-

ers, such as Internet Explorer (version 7 and earlier) and
Konqueror, allow users to manually create new browser pro-
cesses by starting a new instance of the browser. However,
these processes contain more than a single browsing in-
stance, and they make no attempt to isolate web program
instances or particular browser components. Our prior tech-
nical report showed all of these browsers to be vulnerable to
robustness problems due to their architecture [Reis 2007a].

Proposed Architectures Several research proposals have
decomposed the browser into modular architectures to im-
prove robustness and security. However, most have done
so at the cost of compatibility by not identifying existing
program boundaries. This makes them difficult to deploy
on today’s web, where pages might break without warn-
ing. For example, the OP browser isolates each web page
instance using a set of processes for various browser com-
ponents [Grier 2008]. The authors do not discuss commu-
nication or DOM interactions between pages of the same
web program instance, which poses a challenge for this ar-
chitecture. In Tahoma [Cox 2006], web programs are iso-
lated in separate virtual machines. Program boundaries must
be specified in manifests provided by the server, however,
which are not available on today’s web. SubOS tries to im-
prove browser security with multiple processes, but the au-
thors do not discuss the granularity of the process model nor
the interactions between processes [Ioannidis 2001].

Recent beta releases of Internet Explorer 8 have intro-
duced a multi-process architecture that can offer some of the
same benefits as those discussed here [Zeigler 2008a;b]. IE8
separates browser and renderer components, and it runs ren-
derers with limited privileges. However, IE8 does not dis-
tinguish or isolate site instances from each other. Instead, it
ensures pages at different trust levels are isolated, such as
local pages and internet pages. It also assigns pages to pro-
cesses without regard to browsing instance or site instance
boundaries. Thus, communicating pages from the same site
may be placed in separate processes, exposing race condi-
tions between their DOM modifications. We provide a sep-
arate contribution, identifying sites as web program bound-
aries and isolating site instances within the browser.

Site-Specific Browsers Several “site-specific browsers”
have recently been introduced, sharing some of the same
motivation as our work. These browsers treat certain web
programs more like desktop applications, with desktop icons
and fewer browser user interface features. Some site-specific
browsers, such as Mozilla Prism and Fluid [Mozilla 2008,
Ditchendorf 2008], run these web programs in separate pro-
cesses to improve their isolation. However, these browsers
require the user to explicitly create shortcuts for each web
program of interest, providing no architectural benefit for
any other sites the user visits. In contrast, our site instance
abstraction makes it possible for browsers to automatically
identify and isolate web program instances, without requir-
ing input from the user.



6. Conclusion
The reliability problems in today’s browsers are symptoms
of an inadequate architecture, designed for a different work-
load than browsers currently face. We have shown that a
multi-process architecture can address these reliabilityprob-
lems effectively by isolating instances of web programs
and the browser components that support them. To do so,
we have identified program abstractions within the browser
while preserving compatibility with existing web content.
These abstractions are useful not just for preventing interfer-
ence between independent groups of web objects, but also
for reasoning about the browser and its trust model. We hope
that they can push forward discussions of future browser ar-
chitectures and types of web content.

Our evaluation shows that Google’s Chromium browser
effectively implements such a multi-process architecture. It
can be downloaded as Google Chrome fromhttp://www.
google.com/chrome/, and its source code is available at
http://dev.chromium.org/.
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