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Abstract

Many Web services operate their own Web crawlers
to discover data of interest, despite the fact that large-
scale, timely crawling is complex, operationally inten-
sive, and expensive. In this paper, we introduce the ex-
tensible crawler, a service that crawls the Web on be-
half of its many client applications. Clients inject filters
into the extensible crawler; the crawler evaluates all re-
ceived filters against each Web page, notifying clients of
matches. As a result, the act of crawling the Web is de-
coupled from determining whether a page is of interest,
shielding client applications from the burden of crawling
the Web themselves.

This paper describes the architecture, implementa-
tion, and evaluation of our prototype extensible crawler,
and also relates early experience from several crawler
applications we have built. We focus on the challenges
and trade-offs in the system, such as the design of a filter
language that is simultaneously expressive and efficient
to execute, the use of filter indexing to cheaply match a
page against millions of filters, and the use of document
and filter partitioning to scale our prototype implemen-
tation to high document throughput and large numbers
of filters. We argue that the low-latency, high selectiv-
ity, and scalable nature of our system makes it a promis-
ing platform for taking advantage of emerging real-time
streams of data, such as Facebook or Twitter feeds.

1 Introduction

Over the past decade, an astronomical amount of in-
formation has been published on the Web. As well,
Web services such as Twitter, Facebook, and Digg re-
flect a growing trend to provide people and applica-
tions with access to real-time streams of information
updates. Together, these two characteristics imply that
the Web has become an exceptionally potent reposi-
tory of programmatically accessible data. Some of the
most provocative recent Web applications are those that
gather and process large-scale Web data, such as virtual
tourism [33]], knowledge extraction [[15]], Web site trust

assessment [24], and emerging trend detection [6]].

New Web services that want to take advantage of
Web-scale data face a high barrier to entry. Finding and
accessing data of interest requires crawling the Web, and
if a service is sensitive to quick access to newly pub-
lished data, its Web crawl must operate continuously and
focus on the most relevant subset of the Web. Unfortu-
nately, massive-scale, timely web crawling is complex,
operationally intensive, and expensive. Worse, for ser-
vices that are only interested in specific subsets of Web
data, crawling is wasteful, as most pages retrieved will
not match their criteria of interest.

In this paper, we introduce the extensible crawler, a
utility service that crawls the Web on behalf of its many
client applications. An extensible crawler lets clients
specify filters that are evaluated over each crawled Web
page; if a page matches one of the filters specified by
a client, the client is notified of the match. As a re-
sult, the act of crawling the Web is decoupled from
the application-specific logic of determining if a page is
of interest, shielding Web-crawler applications from the
burden of crawling the Web themselves.

We anticipate two deployment modes for an extensi-
ble crawler. First, it can run as a service accessible re-
motely across the wide-area Internet. In this scenario,
filter sets must be very highly selective, since the band-
width between the extensible crawler and a client appli-
cation is scarce and expensive. Second, it can run as a
utility service [[17] within cloud computing infrastructure
such as Amazon’s EC2 or Google’s AppEngine. Filters
can be much less selective in this scenario, since band-
width between the extensible crawler and its clients is
abundant, and the clients can pay to scale up the compu-
tation processing selected documents.

This paper describes our experience with the design,
implementation, and evaluation of an extensible crawler,
focusing on the challenges and trade-offs inherent in this
class of system. For example, an extensible crawler’s fil-
ter language must be sufficiently expressive to support
interesting applications, but simultaneously, filters must
be efficient to execute. A naive implementation of an ex-
tensible crawler would require computational resources



proportional to the number of filters it supports multi-
plied by its crawl rate; instead, our extensible crawler
prototype uses standard indexing techniques to vastly re-
duce the cost of executing a large number of filters. To
scale, an extensible crawler must be distributed across
a cluster. Accordingly, the system must balance load
(both filters and pages) appropriately across machines,
otherwise an overloaded machine will limit the rate at
which the entire system can process crawled pages. Fi-
nally, there must be appropriate mechanisms in place to
allow web-crawler applications to update their filter sets
frequently and efficiently.

We demonstrate that XCrawler, our early prototype
system, is scalable across several dimensions: it can ef-
ficiently process tens of millions of concurrent filters
while processing thousands of Web pages per second.
XCrawler is also flexible. By construction, we show
that its filter specification language facilitates a wide
range of interesting web-crawler applications, including
keyword-based notification, Web malware detection and
defense, and copyright violation detection.

An extensible crawler bears similarities to sev-
eral other systems, including streaming and parallel
databases [1, 10, (11} (13} |14} [19], publish-subscribe
systems [2, 9, [16, 27, [31], search engines and web
crawlers [8}, [12} 20} 21], and packet filters [23| 25/ 130
32, 134]. Our design borrows techniques from each, but
we argue that the substantial differences in the work-
load, scale, and application requirements of extensible
crawlers mandate many different design choices and op-
timizations. We compare XCrawler to related systems in
the related work section (Section E]) and we provide an
in-depth comparison to search engines in Section [2.1]

2 Overview

To better motivate the goals and requirements of
extensible crawlers, we now describe a set of web-
crawler applications that we have experimented with us-
ing our prototype system. Table [I] gives some order-
of-magnitude estimates of the workload that we expect
these applications would place on an extensible crawler
if deployed at scale, including the total number of filters
each application category would create and the selectiv-
ity of a client’s filter set.

Keyword-based notification. Similar to Google
Alerts, this application allows users to register keyword
phrases of interest, and receive an event stream corre-
sponding to Web pages containing those keywords. For
example, users might upload a vanity filter (“Jonathan
Hsieh”), or a filter to track a product or company (“palm
pre”). This application must support a large number of
users, each with a small and relatively slowly-changing
filter set. Each filter should be highly selective, matching
a very small fraction of Web pages.

keyword Web copyright Web
notification | malware | violation | research
# clients ~10"6 ~1072 ~1072 ~10"3
# filters per client ~10"2 ~10"6 ~10"6 ~10"2
fraction of pages that ~107-5 ~10M4 ~10M-6 ~107-3
match for a client
total # filters ~10"8 ~10"8 ~10"8 ~10"5

Table 1: Web-crawler application workloads. This ta-
ble summarizes the approximate filter workloads we ex-
pect from four representative applications.

Web malware detection. This application uses a
database of regular-expression-based signatures to iden-
tify malicious executables, JavaScript, or Web con-
tent. New malware signatures are injected daily, and
clients require prompt notification when new malicious
pages are discovered. This application must support a
small number of clients (e.g., McAfee, Google, and
Symantec), each with a large and moderately quickly
changing filter set. Each filter should be highly selec-
tive; in aggregate, approximately roughly 1 in 1000 Web
pages contain malicious content [26, [28].

Copyright violation detection. Similar to commercial
offerings such as attributor. com, this application
lets clients find Web pages containing content contain-
ing their intellectual property. A client, such as a news
provider, maintains a large database of highly selective
filters, such as key sentences from their news articles.
New filters are injected into the system by a client when-
ever new content is published. This application must sup-
port a moderate number of clients, each with a large, se-
lective, and potentially quickly changing filter set.

Web measurement research. This application permits
scientists to perform large-scale measurements of the
Web to characterize its content and dynamics. Individual
research projects would inject filters to randomly sample
Web pages (e.g., sample 1 in 1000 random pages as rep-
resentative of the overall Web) or to select Web pages
with particular features and tags relevant to the study
(e.g., select Ajax-related JavaScript keywords in a study
investigating the prevalence of Ajax on the Web). This
application would support a modest number of clients
with a moderately sized, slowly changing filter set.

2.1 Comparison to a search engine

At first glance, one might consider implementing an
extensible crawler as a layer on top of a conventional
search engine. This strawman would periodically exe-
cute filters against the search engine, looking for new
document matches and transmitting those to applica-
tions. On closer inspection, however, several fundamen-
tal differences between search engines and extensible
crawlers, their workloads, and their performance require-
ments are evident, as summarized in Table[2] Because of



search engine

extensible crawler

refreshed by crawler

clients millions of people thousands of applications
~trillion stored in a crawl arrive in a stream from
documents database and periodically | crawler, processed on-the-

fly and not stored

filters / queries

arrive in a stream from
users, processed on-the-
fly and not stored

~billion stored in a filter
database and periodically
updated by applications

latency is less important

indexing index documents index queries
query response time is document processing time
latency crucial; document refresh is crucial; filter update

latency is less important

selectivity and

queries might not be

filters are assumed to be

“important” index subset

query result selective; result ranking is | selective; all matches are
ranking crucial for usability sent to applications

in-memory cache of entire filter index is stored

caching popular query results and | in memory; result caching

is not relevant

Table 2: Search engines vs. extensible crawlers. This
table summarizes key distinctions between the workload,
performance, and scalability requirements of search en-
gines and extensible crawlers.

these differences, we argue that there is an opportunity
to design an extensible crawler that will scale more effi-
ciently and better suit the needs of its applications than a
search-engine-based implementation.

In many regards, an extensible crawler is an inversion
of a search engine. A search engine crawls the Web to pe-
riodically update its stored index of Web documents, and
receives a stream of Web queries that it processes against
the document index on-the-fly. In contrast, an extensi-
ble crawler periodically updates its stored index of filters,
and receives a stream of Web documents that it processes
against the filter index on-the-fly. For a search engine,
though it is important to reduce the time in between doc-
ument index updates, it is crucial to minimize query re-
sponse time. For an extensible crawler, it is important to
be responsive in receiving filter updates from clients, but
for “real-time Web” applications, it is more important to
process crawled documents with low latency.

There are also differences in scale between these two
systems. A search engine must store and index hundreds
of billions, if not trillions, of Web documents, contain-
ing kilobytes or megabytes of data. On the other hand,
an extensible crawler must store and index hundreds of
millions, or billions, of filters; our expectation is that fil-
ters are small, perhaps dozens or hundreds of bytes. As a
result, an extensible crawler must store and index four or
five orders of magnitude less data than a search engine,
and it is more likely to be able to afford to keep its entire
index resident in memory.

Finally, there are important differences in the perfor-
mance and result accuracy requirements of the two sys-
tems. A given search engine query might match millions
of Web pages. To be usable, the search engine must rely
heavily on page ranking to present the top matches to

users. Filters for an extensible crawler are assumed to
be more selective than search engine queries, but even
if they are not, filters are executed against documents as
they are crawled rather than against the enormous Web
corpus gathered by a search engine. All matching pages
found by an extensible crawler are communicated to a
web-crawler application; result ranking is not relevant.

Traditional search engines and extensible crawlers are
in some ways complementary, and they can co-exist. Our
work focuses on quickly matching freshly crawled docu-
ments against a set of filters, however, many applications
can benefit from being able to issue queries against a full,
existing Web index in addition to filtering newly discov-
ered content.

2.2 Architectural goals

Our extensible crawler architecture has been guided
by several principles and system goals:

High Selectivity. The primary role of an extensi-
ble crawler is to reduce the number of web pages a
web-crawler application must process by a substantial
amount, while preserving pages in which the applica-
tion might have interest. An extensible crawler can be
thought of as a highly selective, programmable matching
filter executing as a pipeline stage between a stock Web
crawler and a web-crawler application.

Indexability. When possible, an extensible crawler
should trade off CPU for memory to reduce the compu-
tational cost of supporting a large number of filters. In
practice, this implies constructing an index over filters
to support the efficient matching of a document against
all filters. One implication of this is that the index must
be kept up-to-date as the set of filters defined by web-
crawler applications is updated. If this update rate is low
or the indexing technique used supports incremental up-
dates, keeping the index up-to-date should be efficient.

Favor Efficiency over Precision. There is generally
a tradeoff between the precision of a filter and its effi-
cient execution, and in these cases, an extensible crawler
should favor efficient execution. For example, a filter
language that supports regular expressions can be more
precise than a filter language that supports only conjuncts
of substrings, but it is simpler to build an efficient index
over the latter. As we will discuss in Section [3.2.2} our
XCrawler prototype implementation exposes a rich fil-
ter language to web-crawler applications, but uses relax-
ation to convert precise filters into less-precise, indexable
versions, increasing its scalability at the cost of exposing
false positive matches to the applications.

Low Latency. To support crawler-applications that de-
pend on real-time Web content, an extensible crawler
should be capable of processing Web pages with low la-
tency. This goal suggests the extensible crawler should
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Figure 1: Extensible crawler architecture. This fig-
ure depicts the high-level architecture of an extensible
crawler, including the flow of documents from the Web
through the system.

be architected as a stage in a dataflow pipeline, rather
than as a batch or map-reduce style computation.

Scalability. An extensible crawler should scale up to
support high Web page processing rates and a very large
number of filters. One of our specific goals is to han-
dle a linear increase in document processing rate with a
corresponding linear increase in machine resources.

2.3 System architecture

Figure [I] shows the high-level architecture of an ex-
tensible crawler. A conventional Web crawler is used to
fetch a high rate stream of documents from the Web. De-
pending on the needs of the extensible crawler’s appli-
cations, this crawl can be broad, focused, or both. For
example, to provide applications with real-time informa-
tion, the crawler might focus on real-time sources such
as Twitter, Facebook, and popular news sites.

Web documents retrieved by the crawler are parti-
tioned across pods for processing. A pod is a set of
nodes that, in aggregate, contains all filters known to the
system. Because documents are partitioned across pods,
each document needs to be processed by a single pod;
by increasing the number of pods within the system, the
overall throughput of the system increases. Document
set partitioning therefore facilitates the scaling up of the
system’s document processing rate.

Within each pod, the set of filters known to the exten-
sible crawler is partitioned across the pod’s nodes. Filter
set partitioning is a form of sharding and it is used to
address the memory or CPU limitations of an individual
node. As more filters are added to the extensible crawler,
additional nodes may need to be added to each pod, and
the partitioning of filters across nodes might need adjust-
ment. Because filters are partitioned across pod nodes,

each document arriving at a pod needs to be distributed
to each pod node for processing. Thus, the throughput of
the pod is limited by the slowest node within the pod; this
implies that load balancing of filters across pod nodes is
crucially important to the overall system throughput.

Each node within the pod contains a subset of the sys-
tem’s filters. A naive approach to processing a docu-
ment on a node would involve looping over each filter
on that node serially. Though this approach would work
correctly, it would scale poorly as the number of filters
grows. Instead, as we will discuss in Section [3;2], we
trade memory for computation by using filter indexing,
relaxation, and staging techniques; this allows us to eval-
uate a document against a node’s full filter set with much
faster than linear processing time.

If a document matches any filters on a node, the node
notifies a match collector process running within the pod.
The collector gathers all filters that match a given docu-
ment and distributes match notifications to the appropri-
ate web-crawler application clients.

Applications interact with the extensible crawler
through two interfaces. They upload, delete, or modify
filters in their filter sets with the filter management API.
As well, they receive a stream of notification events cor-
responding to documents that match at least one of their
filters through the notification API. We have considered
but not yet experimented with other interfaces, such one
for letting applications influence the pages that the web
crawler visits.

3 XCrawler Design and Implementation

In this section, we describe the design and imple-
mentation of XCrawler, our prototype extensible crawler.
XCrawler is implemented in Java and runs on a cluster of
commodity multi-core x86 machines, connected by a gi-
gabit switched network. Our primary optimization con-
cern while building XCrawler was efficiently scaling to
a large number of expressive filters.

In the rest of this section, we drill down into four as-
pects of XCrawler’s design and implementation: the fil-
ter language it exposes to clients, how a node matches
an incoming document against its filter set, how docu-
ments and filters are partitioned across pods and nodes,
and how clients are notified about matches.

3.1 Filter language and document model

XCrawler’s declarative filter language strikes a bal-
ance between expressiveness for the user and execution
efficiency for the system. The filter language has four
entities: attributes, operators, values, and expressions.
There are two kinds of values: simple and composite.
Simple values can be of several types, including byte se-
quences, strings, integers and boolean values. Composite
values are tuples of values.



A document is tuple of attribute and values pairs.
Attributes are named fields within a document; during
crawling, each Web document is pre-processed to extract
a static set of attributes and values. This set is passed
to nodes and is referenced by filters during execution.
Examples of a document’s attribute-value pairs include
its URL, the raw HTTP content retrieved by the crawler,
certain HTTP headers like Content-Length or Content-
Type, and if appropriate, structured text extracted from
the raw content. To support sampling, we also provide
a random number attribute whose per-document value is
fixed at chosen when other attributes are extracted.

A user-provided filter is a predicate expression; if the
expression evaluates to true against a document, then the
filter matches the document. A predicate expression is ei-
ther a boolean operator over a single document attribute,
or a conjunct of predicate expressions. A boolean opera-
tor expression is an (attribute, operator, value) triple, and
is represented in the form:

attribute.operator (value)

The filter language provides expensive operators such
as substring and regular expression matching as well as
simple operators like equalities and inequalities.

For example, a user could specify a search for the
phrase “Barack Obama” in HTML files by specifying:

mimetype.equals ("text/html") &
text.substring ("Barack Obama")

Alternatively, the user could widen the set of accept-
able documents by specifying a conjunction of multiple,
less restrictive keyword substring filters.

mimetype.equals ("text/html") &
text.substring ("Barack") &
text.substring ("Obama")

Though simple, this language is rich enough to sup-
port the applications outlined previously in Section
For example, our prototype Web malware detection ap-
plication is implemented as a set of regular expression
filters derived from the ClamAV virus and malware sig-
nature database.

3.2 Filter execution

When a newly crawled document is dispatched to a
node, that node must match the document against its set
of filters. As previously mentioned, a naive approach
to executing filters would be to iterate over them se-
quentially; unfortunately, the computational resources
required for this approach would scale linearly with both
the number of filters and the document crawl rate, which
is severely limiting. Instead, we must find a way to opti-
mize the execution of a set of filters.

To do this, we rely on three techniques. To main-
tain throughput while scaling up the number of filters

on a node, we create memory-resident indexes for the
attributes referenced by filters. Matching a document
against an indexed filter set requires a small number of
index lookups, rather than computation proportional to
the number of filters. However, a high fidelity index
might require too much memory, and constructing an ef-
ficient index over an attribute that supports a complex op-
erator such as a regular expression might be intractable.
In either case, we use relaxation to convert a filter into
a form that is simpler or cheaper to index. For example,
we can relax a regular expression filter into one that uses
a conjunction of substring operators.

A relaxed filter is less precise than the full filter from
which it was derived, potentially causing false positives.
If the false positive rate is too high, we can feed the tenta-
tive matches from the index lookups into a second stage
that executes filters precisely but at higher cost. By stag-
ing the execution of some filters, we regain higher preci-
sion while still controlling overall execution cost. How-
ever, if the false positive rate resulting from a relaxed
filter is acceptably low, staging is not necessary, and all
matches (including false positives) are sent to the client.
Whether a false positive rate is acceptable depends on
many factors, including the execution cost of staging in
the extensible crawler, the bandwidth overhead of trans-
mitting false positives to the client, and the cost to the
client of handling false positives.

3.2.1 Indexing

Indexed filter execution requires the construction of
an index for each attribute that a filter set references, and
for each style of operator that is used on those attributes.
For example, if a filter set uses a substring operator over
the document body attribute, we build an Aho-Corasick
multistring search trie [3] over the values specified by fil-
ters referencing that attribute. As another example, if a
filter set uses numeric inequality operators over the docu-
ment size attribute, we construct a binary search tree over
the values specified by filters referencing that attribute.

Executing a document against a filter set requires
looking up the document’s attributes against all indexes
to find potentially matching filters. For filters that con-
tain a conjunction of predicate expressions, we could in-
sert each expression into its appropriate index. Instead,
we identify and index only the most selective predicate
expression; if the filter survives this initial index lookup,
we can either notify the client immediately and risk false
positives or use staging (discussed in Section [3.2.3) to
evaluate potential matches more precisely.

Creating indexes lets us execute a large number of fil-
ters efficiently. Figure [2] compares the number of nodes
that would be required in our XCrawler prototype to sus-
tain a crawl rate of 100,000 documents per second, using
either naive filter execution or filter execution with in-
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Figure 2: Indexed filter execution. This graph com-
pares the number of nodes (machines) required for a
crawl rate of 100,000 documents per second when us-
ing naive filter execution and when using indexed filter
execution, including relaxation and staging.

dexing, relaxation, and staging enabled. The filter set
used in this measurement are sentences extracted from
Wikipedia articles; this emulates the workload of a copy-
right violation detection application. Our measurements
were gathered on a small number of nodes, and pro-
jected upwards to larger numbers of nodes assuming lin-
ear scaleup in crawl rate with document set partitioning.

Our prototype runs on 8 core, 2 GHz Intel processors.
When using indexing, relaxation, and staging, a node
with 3GB of RAM is capable of storing approximately
400,000 filters of this workload, and can process docu-
ments at a rate of approximately 9,000 documents per
second. To scale to 100,000 documents per second, we
would need 12 pods, i.e., we must replicate the full filter
set 12 times, and partition incoming documents across
these replicas. To scale to 9,200,000 filters, we would
need to partition the filter set across 24 machines with
3GB of RAM each. Thus, the final system configuration
would have 12 pods, each with 24 nodes, for a total of
288 machines. If we installed more RAM on each ma-
chine, we would need commensurately fewer machines.

Even when including the additional cost of staging,
indexed execution can provide several orders of magni-
tude better scaling characteristics than naive execution
as the number of filters grows. Note that the CPU is the
bottleneck resource for execution in both cases, although
with staged indexing, staging causes the CPUs to be pri-
marily occupied with processing false positives from re-
laxed filters.

3.2.2 Relaxation

We potentially encounter two problems when using
indexing: the memory footprint of indexes might be ex-
cessive, and it might be infeasible to index attributes or
operators such as regular expressions or conjuncts. To
cope with either problem, we use relaxation to convert a
filter into a form that is less accurate but indexable.

As one example, consider copyright violation detec-
tion filters that contain sentences that should be searched

—*-naive
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—+—relaxed+indexed+staged
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Figure 3: Indexed and relaxed filter memory foot-
print. This graph compares the memory footprint of sub-
string filters when using four different execution strate-
gies. The average filter length in the filter set was 130
bytes, and relaxation used 32 byte ngrams. Note that the
relaxed+indexed and the relaxed+indexed+staged lines
overlap on the graph.

for as substrings within documents. Instead of search-
ing for the full sentence, filters can be relaxed to search
for an ngram extracted from the sentence (e.g., a 16 byte
character fragment). This would significantly reduce the
size of the in-memory index.

There are many possible ngram relaxations for a spe-
cific string; the ideal relaxation would be just as selec-
tive as the full sentence, returning no false positives.
Intuitively, shorter ngrams will tend to be less selec-
tive but more memory efficient. Less intuitively, dif-
ferent fragments extracted from the same string might
have different selectivity.  Consider the string <a
href="http://zyzzyva.com">, and two possi-
ble 8-byte relaxations <a href=and /zyzzyva: the
former would be much less selective than the latter.
Given this, our prototype gathers run-time statistics on
the hit rate of relaxed substring operations, identifies re-
laxations that have anomalously high hit rates, and se-
lects alternative relaxations for them. If we cannot find a
low hit rate relaxation, we ultimately reject the filter.

Relaxation also allows us to index operations that are
not directly or efficiently indexable. Conjuncts are not
directly indexable, but can be relaxed by picking a selec-
tive indexable subexpression. A match of this subexpres-
sion is not as precise as the full conjunction, but can elim-
inate a large portion of true negatives. Similarly, regular
expressions could hypothetically be indexed by combin-
ing their automata, but combined automata tend to have
exponentially large state requirements or high computa-
tional requirements [12} 23} 32]. Instead, if we can iden-
tify substrings that the regular expression implies must
occur in an accepted document, we can relax the regular
expression into a less selective but indexable substring. If
a suitably selective substring cannot be identified from a
given regular expression, that filter can be rejected when
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Figure 4: Filter relaxation trade-off. This graph illus-
trates the trade-off between memory footprint and false
positive rates when using different degrees of relaxation.

the client application attempts to upload it.

Figure [3] compares the memory footprint of naive,
indexed, relaxed+indexed, and relaxed+indexed+staged
filter execution. The filter set used in this measurement is
the same as in Figure 2] namely sentences extracted from
Wikipedia articles, averaging 130 characters in length.
Relaxation consists of selecting a random 32 character
substring from a sentence. The figure demonstrates that
indexing imposes a large memory overhead relative to
naive execution, but that relaxation can substantially re-
duce this overhead.

Relaxation potentially introduces false positives. Fig-
ure [] illustrates the trade-off between the memory foot-
print of filter execution and the hit rate, as the degree of
relaxation used varies. With no relaxation, an indexed
filter set of 400,000 Wikipedia sentences averaging 130
characters in length requires 8.7GB of memory and has
a hit rate of 0.25% of Web documents. When relaxing
these filters to 64 byte ngrams, the memory footprint is
reduced to 3.5GB and the hit rate marginally climbs to
0.26% of documents. More aggressive relaxation causes
a substantial increase in false positives. With 32 byte
ngrams, the memory footprint is just 1.4GB, but the hit
rate grows to 1.44% of documents: nearly four out of five
hits are false positives.

3.2.3 Staging

If a relaxed filter causes too many false positives, we
can use staging to eliminate them at the cost of additional
computation. More specifically, if a filter is marked
for staging, any document that matches the relaxed ver-
sion of the filter (a partial hit) is subsequently executed
against the full version of that filter. Thus, the first stage
of filter execution consists of index lookups, while the
second stage of execution iterates through the partial hits
identified by the first stage.

The second stage of execution does not benefit from
indexing or relaxation. Accordingly, if the partial hit rate
in the first stage is too high, the second stage of execution

has the potential to dominate computation time and limit
the throughput of the system. As well, any filter that is
staged requires the full version of the filter to be stored in
memory. Staging eliminates false positives, but has both
a computational and memory cost.

3.3 Partitioning

As with most cluster-based services, the extensible
crawler achieves cost-efficient scaling by partitioning
its work across inexpensive commodity machines. Our
workload consists of two components: documents that
continuously arrive from the crawler and filters that are
periodically uploaded or updated by client applications.
To scale, the extensible crawler must find an intelligent
partitioning of both documents and filters across ma-
chines.

3.3.1 Document set partitioning

Our first strategy, which we call document set parti-
tioning, is used to increase the overall throughput of the
extensible crawler. As previously described, we define
a pod as a set of nodes that, in aggregate, contains all
filters known to the system. Thus, each pod contains all
information necessary to process a document against a
filter set. To increase the throughput of the system, we
can add a pod, essentially replicating the configuration
of existing pods onto a new set of machines.

Incoming documents are partitioned across pods, and
consequently, each document must be routed to a single
pod. Since each document is processed independently
of others, no interaction between pods is necessary in the
common case. Document set partitioning thus leads to an
embarrassingly parallel workload, and linear scalability.
Our implementation monitors the load of each pod, pe-
riodically adjusting the fraction of incoming documents
directed to each pod to alleviate hot spots.

3.3.2 Filter set partitioning

Our second strategy, which we call filter set partition-
ing, is used to address the memory and CPU limitations
of an individual node within a pod. Filter set partition-
ing is analogous to sharding, declustering, and horizontal
partitioning. Since indexing operations are memory in-
tensive, any given node can only index a bounded num-
ber of filters. Thus, as we scale up the number of filters
in the system, we are forced to partition filters across the
nodes within a pod.

Our system supports complex filters composed of a
conjunction of predicate expressions. In principle, we
could decompose filters into predicates, and partition
predicates across nodes. In practice, our implementation
uses the simpler approach of partitioning entire filters.
As such, a document that arrives at a node can be fully
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Figure 5: Node throughput. This (sorted) graph shows
the maximum throughput each node within a pod is ca-
pable of sustaining under two different policies: random
filter placement, and alphabetic filter placement.

evaluated against each filter on that node without requir-
ing any cross-node interactions.

Since a document must be evaluated against all fil-
ters known by the system, each document arriving at a
pod must be transmitted to and evaluated by each node
within the pod. Because of this, the document through-
put that a pod can sustain is limited by the throughput of
the slowest node within the pod.

Two issues substantially affect node and pod through-
put. First, a filter partitioning policy that is aware of the
indexing algorithms used by nodes can tune the place-
ment of filters to drive up the efficiency and throughput
of all nodes. Second, some filters are more expensive to
process than others. Particularly expensive filters can in-
duce load imbalances across nodes, driving down overall
pod throughput.

Figure [3] illustrates these effects. Using the same
Wikipedia workload as before, this graph illustrates the
maximum document throughput that each node within a
pod of 24 machines is capable of sustaining, under two
different filter set partitioning policies. The first policy,
random, randomly places each filter on a node, while the
second policy, alphabetic, sorts the substring filters al-
phabetically by their most selective ngram relaxation. By
sorting alphabetically, the second policy causes ngrams
that share prefixes to end up on the same node, improv-
ing both the memory and computation efficiency of the
Aho-Corasick index. The random policy achieves good
load balancing but suffers from lower average through-
put than alphabetic. Alphabetic exhibits higher average
throughput but suffers from load imbalance. From our
measurements using the Wikipedia filter set, a 5 million
filter index using random placement requires 13.9GB of
memory, while a 5 million filter index using alphabetic
placement requires 12.1GB, a reduction of 13%.

In Figure [§] we measure the relationship between the
number of naive evaluations that must be executed per
document when using staged relaxation and the through-
put a node can sustain. As the number of naive execu-
tions increases, throughput begins to drop, until eventu-
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Figure 6: Staged evaluations vs. throughput. This
graph shows the effect of increasing partial hit rate of
a filter set within a node on the maximum document
throughput that node is capable of processing.

ally the node spends most of its time performing these
evaluations. In practice, the number of naive evaluations
can increase for two reasons. First, a given relaxation can
be shared by many independent filters. If the relaxation
matches, all associated filters must be executed fully.
Second, a given relaxation might match a larger-than-
usual fraction of incoming documents. In Section [4.2]
we further quantify these two effects and propose strate-
gies for mitigating them.

Given all of these issues, our implementation takes
the following strategy to partition filters. Initially,
an index-aware partitioning is chosen; for example,
alphabetically-sorted prefix grouping is used for sub-
string filters. Filters are packed onto nodes until mem-
ory is exhausted. Over time, the load of nodes within
each pod is monitored. If load imbalances appear within
a pod, then groups of filters are moved from slow nodes
to faster nodes to rectify the imbalance. Note that mov-
ing filters from one node to another requires the indexes
on both nodes to be recomputed. The expense of doing
this bounds how often we can afford to rebalance.

A final consideration is that the filter set of an exten-
sible crawler changes over time as new filters are added
and existing filters are modified or removed. We cur-
rently take a simple approach to dealing with filter set
changes: newly added or modified filters are accumu-
late in “overflow” nodes within each pod and are ini-
tially executed naively without the benefit of indexing.
We then take a generational approach to re-indexing and
re-partitioning filters: newly added and modified filters
that appear to be stable are periodically incorporated into
the non-overflow nodes.

3.4 Additional implementation details

The data path of the extensible crawler starts as doc-
uments are dispatched from a web crawler into our sys-
tem and ends as matching documents are collected from
workers and transmitted to client crawler applications
(see Figure[I). Our current prototype does not fully ex-



plore the design and implementation issues of either the
dispatching or collection components.

In our experiments, we use the open source Nutch spi-
der to crawl the web, but we modified it to store docu-
ments locally within each crawler node’s filesytem rather
than storing them within a distributed Hadoop filesys-
tem. We implemented a parallel dispatcher that runs on
each crawler node. Each dispatcher process partitions
documents across pods, replicates documents across pod
nodes, and uses backpressure from nodes to decide the
rate at which documents are sent to each pod. Each pod
node keeps local statistics about filter matching rates,
annotates matching documents with a list of filters that
matched, and forwards matching documents to one of a
static set of collection nodes.

An interesting configuration problem concerns bal-
ancing the CPU, memory, and network capacities of
nodes within the system. We ensure that all nodes within
a pod are homogeneous. As well, we have provisioned
each node to ensure that the network capacity of nodes
is not a system bottleneck. Doing so required provi-
sioning each filter processing node with two 1-gigabit
NICs. To take advantage of multiple cores, our filter pro-
cessing nodes use two threads per core to process doc-
uments against indexes concurrently. As well, we use
one thread per NIC to pull documents from the network
and place them in a queue to be dispatched to filter pro-
cessing threads. We can add additional memory to each
node until the cost of additional memory becomes pro-
hibitive. Currently, our filter processing nodes have 3GB
of RAM, allowing each of them to store approximately a
half-million filters.

Within the extensible crawler itself, all data flows
through memory; no disk operations are required. Most
memory is dedicated to filter index structures, but some
memory is used to queue documents for processing and
to store temporary data generated when matching a doc-
ument against an index or an individual filter.

We have not yet explored fault tolerance issues. Our
prototype currently ignores individual node failures and
does not attempt to detect or recover from network or
switch failures. If a filter node fails in our current im-
plementation, documents arriving at the associated pod
will fail to be matched against filters that resided on that
node. Note that our overall application semantics are best
effort: we do not (yet) make any guarantees to client ap-
plications about when any specific web page is crawled.
We anticipate that this will simplify fault tolerance is-
sues, since it is difficult for clients to distinguish between
failures in our system and the case that a page has not yet
been crawled. Adding fault tolerance and strengthening
our service guarantees is a potentially challenging future
engineering topic, but we do not anticipate needing to
invent fundamentally novel mechanisms.

3.5 Future considerations

There are several interesting design and implementa-
tion avenues for the extensible crawler. Though they are
beyond the scope of this paper, it is worth briefly men-
tioning a few of them. Our system currently only indexes
textual documents; in the future, it would be interesting
to consider the impact of richer media types (such as im-
ages, videos, or flash content) on the design of the filter
language and on our indexing and execution strategy. We
currently consider the crawler itself to be a black box, but
given that clients already specify content of interest to
them, it might be beneficial to allow clients to focus the
crawler on certain areas of the Web of particular inter-
est. Finally, we could imagine integrating other streams
of information into our system besides documents gath-
ered from a Web crawler, such as real-time “firchoses”
produced by systems such as Twitter.

4 Evaluation

In this section, we describe experiments that explore
the performance of the extensible crawler, we investi-
gate the effect of different filter partitioning policies. As
well, we demonstrate the need to identify and reject non-
selective filters. Finally, we present early experience
with three prototype Web crawler applications.

All of our experiments are run on a cluster of 8-core,
2GHz Intel Xeon machines with 3GB of RAM, dual
gigabit NICs, and a 500 GB 7200-RPM Barracuda ES
SATA hard drive. Our systems are configured to run
32bit Linux kernel version 2.6.22.9-91.fc7, and to use
Sun’s 23 bit JVM version 1.6.0_12 in server mode. Un-
less stated otherwise, the filter workload for our experi-
ments consists of 9,204,600 unique sentences extracted
from Wikipedia; experiments with relaxation and stag-
ing used 32 byte prefix ngrams extracted from the filter
sentences.

For our performance oriented experiments, we gath-
ered a 3,349,044 Web document crawl set on August
24th, 2008 using the Nutch crawler and pages from the
DMOZ open directory project as our crawl seed. So that
our experiments were repeatable, when testing the per-
formance of the extensible crawler we used on a cus-
tom tool to stream this document set at high throughput,
rather than re-crawling the Web. Of the 3,349,044 docu-
ments in our crawl set, 2,682,590 contained textual con-
tent, including HTML and PDF files; the rest contain bi-
nary content, including images and executables. Our ex-
tensible crawler prototype does not yet notify wide-area
clients about matching documents; instead, we gather
statistic about document matches, but drop the matching
documents instead of transmitting them.
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Figure 7: Lucene vs. extensible crawler. This graph
compares the document processing rates of a single-node
extensible crawler and a single-node Lucene search en-
gine. The x-axis displays the number of documents
crawled between reconstructions of the Lucene index.
Note that the y-axis is logarithmically scaled.

4.1 Nutch vs. the extensible crawler

In Section [2.1, we described architectural, workload,
and expected performance differences between the ex-
tensible crawler and an alternative implementation of
the service based on a conventional search engine. To
demonstrate these differences quantitatively, we ran a se-
ries of experiments directly comparing the performance
of our prototype to an alternative implementation based
on the Lucene search engine, version 2.1.0 [[7].

The construction of a Lucene-based search index
is typically performed as part of a Nutch map-reduce
pipeline that crawls web pages, stores them in the HDFS
distributed filesystem, builds and stores an index in
HDFS, and then services queries by reading index en-
tries from HDFS. To make the comparison of Lucene to
our prototype more fair, we eliminated overheads intro-
duced by HDFS and map-reduce by modifying the sys-
tem to store crawled pages and indexes in nodes’ local
filesystems. Similarly, to eliminate variation introduced
by the wide-area Internet, we spooled our pre-crawled
Web page data set to Lucene’s indexer or to the extensi-
ble crawler over the network.

The search engine implementation works by periodi-
cally constructing an index based on the /N most recently
crawled web pages; after constructing the index and par-
titioning it across nodes, each node evaluates the full fil-
ter set against its index fragment. The implementation
uses one thread per core to evaluate filters. By increasing
N, the implementation indexes less frequently, reducing
overhead, but suffers from a larger latency between the
downloading of a page by the crawler and the evaluation
of the filter set against that page. In contrast, the exten-
sible crawler implementation constructs and index over
its filters once, and then continuously evaluates pages
against that index.

In Figure [/, we compare the single node throughput
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Figure 8: Collision set size. This histogram shows the
distribution of collision set sizes when using 32-byte
ngrams over the Wikipedia filter set.

of the two implementations, with 400,000 filters from the
Wikipedia workload. Note that the x-axis corresponds to
N, but this parameter only applies to the Lucene crawler.
The extensible crawler implementation has nearly two
orders of magnitude better performance than Lucene;
this is primarily due to the fact that Lucene must service
queries against its disk-based document index, while the
extensible crawler’s filter index is served out of mem-
ory. As well, the Lucene implementation is only able to
achieve asymptotic performance if it indexes batches of
N > 1,000,000 documents.

Our head-to-head comparison is admittedly still un-
fair, since Lucene was not optimized for fast, incremen-
tal, memory-based indexing. Also, we could conceivably
bridge the gap between the two implementations by us-
ing SSD drives instead of spinning platters to store and
serve Lucene indexes. However, our comparison serves
to demonstrate some of the design tensions between con-
ventional search engines and extensible crawlers.

4.2 Filter partitioning and blacklisting

As mentioned in Section two different aspects
of a filter set contribute to load imbalances between oth-
erwise identical machines: first, a specific relaxation
might be shared by many different filters, causing a par-
tial hit to result in commensurately many naive filter ex-
ecutions, and second, a given relaxation might match a
large number of documents, also causing a large number
of naive filter executions. We now quantify these effects.

We call the a set of filters that share an identical relax-
ation a collision set. A collision set of size 1 implies the
associated filter’s relaxation is unique, while a collision
set of size IV implies that N filters share a specific relax-
ation. In Figure 8] we show the distribution of collision
set sizes when using a 32-byte prefix relaxation of the
Wikipedia filter set. The majority of filters (8,434,126
out of 9,204,600) have a unique relaxation, but some
relaxations collide with many filters. For example, the
largest collision set size was 35,585 filters. These filters
all shared the prefix “The median income for a house-
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Figure 9: Node throughput. This (sorted) graph shows
the maximum throughput each node within a pod is capa-
ble of sustaining under three different policies: random
filter placement, alphabetic filter placement, and alpha-
betic filter placement with blacklisting.

hold in the”; this sentence is used in many Wikipedia
articles describing income in cities, counties, and other
population centers. If a document matches against this
relaxation, the extensible crawler would need to naively
execute all 35,585 filters.

Along a similar vein, some filter relaxations
will match a larger-than-usual fraction of documents.
One notably egregious example from our Web mal-
ware detection application was a filter whose relax-
ation contained was the 32-character sequence <meta
http-equiv="Content-Type">. Unsurprisingly, a
very large fraction of Web pages contain this substring!

To deal with these two sources of load imbalance, our
implementation blacklists specific relaxations. If our im-
plementation notices a collision set containing more than
100 filters, we blacklist the associated relaxation, and
compute alternate relaxations for those filters. In the case
of our Wikipedia filter set, this required modifying the re-
laxation of only 145 filters. As well, if our implementa-
tion notices that a particular relaxation has an abnormally
high document partial hit rate, that “hot” relaxation is
blacklisted and new filter relaxations are chosen.

Blacklisting rectifies these two sources of load im-
balance. Figure [J] revisits the experiment previously il-
lustrated in Figure [3 but with a new line that shows
the effect of blacklisting on the distribution of document
processing throughputs across the nodes in our cluster.
Without blacklisting, alphabetic filter placement demon-
strates significant imbalance. With blacklisting, the ma-
jority of the load imbalance is removed, and the slowest
node is only 17% slower than the fastest node.

4.3 Experiences with Web crawler applications

To date, we have prototyped three Web crawler ap-
plications: vanity alters that detect pages containing
a user’s name, a copyright detection application that
finds Web objects that match ClamAV’s malware sig-
nature database, and a copyright violation detection ser-

Vanity Copyright | Malware
alerts violation detection
# filters 10,622 251,647 3,128
doc hit rate 68.98% 0.664% 45.38%
. false +ves per doc 15.76 0.0386 0.851
relaxation only
throughput (docs/s) 7,244 8,535 8,534
# machines needed 13.80 11.72 11.72
) : doc hit rate 13.1% 0.016% 0.009%
with relaxation [Ty o oot (docsis) | 592 8,229 6,354
and staging
# machines needed 168.92 12.15 15.74

Table 3: Web crawler application features and perfor-
mance. This table summarizes the high-level workload
and performance features of our three prototype Web
crawler applications.

vice that looks for pages containing copies of Reuters or
Wikipedia articles. Table [3] summarizes the high-level
features of these applications and their filter workloads;
we now discuss each in turn, relating additional details
and anecdotes.

4.3.1 Vanity alerts

For our vanity filter application, we authored 10,622
filters based on names of university faculty and students.
Our filters were constructed as regular expressions of
the form *‘first.{1,20}last’’, i.e., the user’s first
name followed by their last name, with the constraint of
no more than 20 characters separating the two parts. The
filters were first relaxed into a conjunct of substring 32-
grams, and from there the longest substring conjunct was
selected as the final relaxation of the filter.

This filter set matched against 13.1% of documents
crawled. This application had a modest number of fil-
ters, but its filter set nonetheless matched against a large
fraction of Web pages, violating our assumption that a
crawler application should have highly selective filters.
Moreover, when using relaxed filters without, there were
many additional false partial hits (an average of 15.76
per document, and an overall document hit rate of 69%).
Most false hits were due to names that are contained in
commonly found words, such as Tran, Chang, or Park.

The lack of high selectivity of its filter set leads us
to conclude that this application is not a good candidate
for the extensible crawler. If millions of users were to
use this service, most Web pages would likely match and
need to be delivered to the crawler application.

4.3.2 Copyright violation detection

For our second application, we prototyped a copyright
violation detection service. We evaluated this application
by constructing a set of 251,647 filters based on 30,534
AP and Reuters news articles appearing between July
and October of 2008. Each filter was a single sentence
extracted from an article, but we extracted multiple fil-



ters from each article. We evaluated the resulting filter
set against a crawl of 3.68 million pages.

Overall, 590 crawled documents (0.016%) matched
against the AP/Reuters filter set, and 619 filters (0.028%
of the filter set) were responsible for these matches. We
manually determined that most matching documents that
matched were original news articles or blogger pages that
quoted sections of articles with attribution. We did find
some sites that appeared to contain unauthorized copies
of entire news stories, and some sites that plagiarized
news stories by integrating the story body but replacing
the author’s byline.

If a document hit, it tended to hit against a single fil-
ter (50% of document hits were for a single filter). A
smaller number of documents hit against many sentences
(13% of documents matched against more than 6 filters).
Documents that matched against many filters tended to
contain full copies of the original news story, while doc-
uments that match a single sentence tended to contain
boilerplate prose, such as a specific author’s byline, legal
disclosures, or common phrases such as “The officials
spoke on condition of anonymity because they weren’t
authorized to release the information.”

4.3.3 Web malware detection

The final application we prototyped was Web mal-
ware detection. We extracted 3,128 text-centric regular
expressions from the February 20, 2009 release of the
ClamAV open-source malware signature database. Be-
cause many of these signatures were designed to match
malicious JavaScript or HTML, some of their relax-
ations contain commonly occurring substrings, such as
<a href='‘http://’’. As aresult, blacklisting was
a particularly important optimization for this workload;
the system was always successful at finding suitably se-
lective relaxations of each filter.

Overall, this filter set matched 342 pages from the
same crawl of 3.68 million pages, with an overall rate of
0.009%. The majority of hits (229) were for two similar
signatures that capture obfuscated JavaScript code that
emits an iframe in the parent page. We examined all of
the pages that matched this signature; in each case, the
iframe contained links to other pages that are known to
contain malicious scripts. Most of the matching pages
appeared to be legitimate business sites that had been
compromised. We also found several pages that matched
a ClamAYV signature designed to detect Web bugs.

In addition to genuinely malicious Web pages, we
found a handful of pages that were application-level false
positives, i.e., they correctly matched a ClamAV filter,
but the page did not contain the intended attack. Some
of these application-level false positives contained blog
entries discussing virulent spam, and the virulent spam
itself was represented in the ClamAV database.

5 Related work

The extensible crawler is related to several classes
of systems: Web crawlers and search engines, publish-
subscribe systems, packet filtering engines, parallel and
streaming databases, and scalable Internet content syndi-
cation protocols. We discuss each in turn.

Web crawlers and search engines. The engineer-
ing issues of high-throughput Web crawlers are complex
but well understood [21]. Modern Web crawlers can re-
trieve thousands of Web pages per second per machine.
Our work leverages existing crawlers, treating them as a
black box from which we obtain a high throughput doc-
ument stream. The Mercator project explored the design
of an extensible crawler [20]], though Mercator’s notion
of extensibility is different than ours: Mercator has well-
defined APIs that simplify the job of adding new modules
that extend the crawler’s set of network protocols or type-
specific document processors. Our extensible crawler
permits remote third parties to dynamically insert new
filters into the crawling pipeline.

Modern Web search engines require complex engi-
neering, but the basic architecture of a scalable search
engine has been understood for more than decade [S§]].
Our extensible crawler is similar to a search engine, but
inverted, in that we index queries rather than documents.
As well, we focus on in-memory indexing for through-
put. Cho and Rajagopalan described a technique for sup-
porting fast indexing of regular expressions by reducing
them to ngrams [12]; our notion of filter relaxation is a
generalization of their approach.

Though the service is now discontinued, Ama-
zon.com offered programmatic search access to a 300TB
archive containing 4 billion pages crawled by Alexa In-
ternet [S] and updated daily. By default, access was re-
stricted to queries over a fixed set of search fields, how-
ever, customers could pay to re-index the full data set
over custom fields. In contrast, the extensible crawler
permits customers to write custom filters over any at-
tribute supported by our document extractors, and since
we index filters rather than pages, our filters are evalu-
ated in real-time, at the moment a page is crawled.

Publish-subscribe systems. The extensible crawler
can be thought of as a content-based publish-subscribe
system [22]] designed and optimized for a real-time Web
crawling workload. Content-based pub-sub systems have
been explored at depth, including in the Gryphon [2],
Siena [9]], Elvin [31], and Le Subscribe [16}27] projects.
Many of these projects explore the trade-off between fil-
ter expressiveness and evaluation efficiency, though most
have a wide-area, distributed event notification context in
mind. Le Subscribe is perhaps closest to our own system;
their language is also a conjunction of predicates, and
like us, they index predicates in main-memory for scal-



able, efficient evaluation. In contrast to these previous
projects, our work explores in depth the partitioning of
documents and filters across machines, the suitability of
our expression language for Web crawling applications,
the impact of disproportionately high hit rate filters, and
evaluates several prototype applications.

Web-based syndication protocols, such as RSS and
Atom, permit Web clients to poll servers to receive feeds
of new articles or document elements. Cloud-based ag-
gregation and push notification services such as rssCloud
and PubSubHubbub allow clients to register interest in
feeds and receive notifications when updates occur, re-
lieving servers from pull-induced overload. These ser-
vices are roughly equivalent to channel-based pub-sub
systems, whereas the extensible crawler is more equiva-
lent to a content-based system.

The Google alerts system [18]] allows users to specify
standing search queries to be evaluated against Google’s
search index. Google alerts periodically emails users
newly discovered search results relevant to their queries.
Alerts uses two different approaches to gather new re-
sults: it periodically re-executes queries against the
search engine and filters previously returned results, and
it continually matches incoming documents against the
body of standing user queries. This second approach has
similarities to the extensible crawler, though details of
Google alert’s architecture, workload, performance, and
scalability have not been publicly disclosed, preventing
an in-depth technical comparison.

Cobra [29]] perhaps most similar to our system. Cobra
is a distributed system that crawls RSS feeds, evaluates
articles against user-supplied filters, and uses reflectors
to distributed matching articles to interested users. Both
Cobra and the extensible crawler benefit from a filter lan-
guage design to facilitate indexing. Cobra focused on
issues of distribution, provisioning, and network-aware
clustering, whereas our work focuses on a single-cluster
implementation, efficiency through filter relaxation and
staging, and scalability through document and filter set
partitioning. As well, Cobra was oriented towards scal-
able search and aggregation of Web feeds, whereas the
extensible crawler provides a platform for more widely
varied crawling applications, such as malware and copy-
right violation detection.

Packet filters and NIDS. Packet filters and network
intrusion detection systems (NIDS) have similar chal-
lenges as the extensible crawler: both classes of systems
must process a large number of filters over a high band-
width stream of unstructured data with low latency. The
BSD packet filter allowed control-flow graph filters to be
compiled down to an abstract filtering machine, and exe-
cuted safely and efficiently in an OS kernel [25]]. Packet
filtering systems have also confronted the problem of ef-
ficiently supporting more expressive filters, while pre-

venting state space explosion when representing large fil-
ter sets as DFAs or NFAs [23, 132]]. Like an extensible
crawler, packet filtering systems suffer from the prob-
lem of normalizing documents content before matching
against filters [30], and of providing additional execution
context so that byte-stream filters can take advantage of
higher-level semantic information [34]. Our system can
benefit from the many recent advances in this class of
system, though our applications require orders of mag-
nitude more filters and therefore a more scalable imple-
mentation. As well, our application domain is more ro-
bust against false positives.

Databases and SDIs. The extensible crawler shares
some design considerations, optimizations, and imple-
mentation techniques with parallel databases such as
Bubba [13] and Gamma [14], in particular our need to
partition filters (queries) and documents (records) over
machines, and our focus on high selectivity as a path
to efficiency. Our workload tends to require many more
concurrent filters, but does not provide the same expres-
siveness as SQL queries. We also have commonalities
with streaming database systems and continuous query
processors [[1L[10L|11]], in that both systems execute stand-
ing queries against an infinite stream of data. However,
streaming database systems tend to focus on semantic is-
sues of queries over limited time windows, particularly
when considering joins and aggregation queries, while
we focus on scalability and Web crawling applications.

Many databases support the notion of triggers that fire
when matching records are added to the database. Prior
work has examined indexing techniques for efficiently
supporting a large number of such triggers [[19].

Selective Dissemination of Information (SDI) sys-
tems [335], including those that provide scalable, efficient
filtering of XML documents [4]], share our goal of exe-
cuting a large number filters over semi-structured docu-
ments, and rely on the same insight of indexing queries
to match against individual documents. These systems
tend to have more complex indexing schemes, but have
not yet been targeted at the scale, throughput, or applica-
tion domain of the extensible crawler.

6 Conclusions

This paper described the design, prototype implemen-
tation, and evaluation of the extensible crawler, a service
that crawls the Web on behalf of its many client applica-
tions. Clients extend the crawler by injecting filters that
identify pages of interest to them. The crawler continu-
ously fetches a stream of pages from the Web, simultane-
ously executes all clients’ filters against that stream, and
returns to each client those pages selected by its filter set.

An extensible crawler provides several benefits. It re-
lieves clients of the need to operate and manage their



own private crawler, greatly reducing a client’s band-
width and computational needs when locating pages of
interest. It is efficient in terms of Internet resources: a
crawler queries a single stream of Web pages on behalf
of many clients. It also has the potential for crawling
highly dynamic Web pages or real-time sources of infor-
mation, notifying clients quickly when new or interesting
content appears.

The evaluation of XCrawler, our early prototype sys-
tem, focused on scaling issues with respect to its num-
ber of filters and crawl rate. Using techniques from re-
lated work, we showed how we can support rich, expres-
sive filters using relaxation and staging techniques. As
well, we used microbenchmarks and experiments with
application workloads to quantify the impact of load bal-
ancing policies and confirm the practicality of our ideas.
Overall, we believe that the low-latency, high selectivity,
and scalable nature of our system makes it a promising
platform for many applications.
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