
Dealing with Cheaters in Anonymous Peer-to-Peer Networks

Paul Gauthier, Brian Bershad, and Steven D. Gribble
University of Washington

{gauthier,bershad,gribble}@cs.washington.edu

Technical Report 04-01-03

January 15, 2004

Abstract

As anonymous peer-to-peer file sharing networks
transition from intellectual curiosity to societal real-
ity, their long-term viability is seriously threatened by
cheaters. A cheater either consumes resources without
producing them (a freeloader), or advertises valuable
content, but ultimately delivers that which is useless (a
spoofer). In both cases, the cheater realizes some ben-
efit from his actions without having to pay a commen-
surate cost. Because these networks are anonymous,
the traditional accountability mechanisms developed for
classic distributed systems do not apply.

In this paper we present a protocol that dramatically
reduces and in many cases eliminates the benefit gained
by cheaters in anonymous peer-to-peer file sharing net-
works. Our protocol is based on the notion of exchange:
instead of allowing users to unidirectionally download
content, in order to acquire a file, a user must simul-
taneously provide a file to somebody else. We orga-
nize users into “exchange groups,” in which each user
provides one file in order to acquire one file, with the
aggregate exchange satisfying all participants.

Through exposition we show that our composite pro-
tocol works well in theory, eliminating the incentive to
freeload and forcing spoofers to spend resources com-
mensurate with the damage they cause. Through trace-
driven simulation, we show that it works well in prac-
tice, resulting in a system in which users can acquire
the content they want with reasonable delay.

1 Introduction

In the last few years, peer-to-peer file sharing net-
works have come into widespread use, attracting over
200 million users [22]. However, cheaters currently
threaten the usability of these networks, and in the fu-
ture may threaten their viability. One type of cheater
is the freeloader, an individual who consumes more con-
tent than he contributes, in the limit always consuming
and never contributing. The freeloader’s intent is to
acquire content without having to produce any, since

producing content costs bandwidth with no direct gain.
Another type of cheater is the content spoofer, some-
one who advertises one piece of content, but in the end
delivers another. The spoofer’s intent is to prevent the
distribution of legitimate content by leveraging the net-
work’s “viral” properties, by causing unwitting users to
further spread a spoofed file after downloading it. This
would allow the spoofer to broadly spread bogus con-
tent without having to pay its actual distribution cost.

Today’s peer-to-peer networks are largely anony-
mous, which exacerbates cheating. Participants can
create as many identities as they wish, and there is no
trusted authority that can vouch for, track, or authen-
ticate identities. The ability to shed an old identity
and create a new one without cost makes it impossible
to hold users accountable for their actions over time.

This paper describes a practical file sharing proto-
col for anonymous peer-to-peer networks that at once
deals with freeloaders and spoofers. The Pretty Fair
Exchange (PFE) protocol presented in this paper en-
sures that a user must upload in order to download.
Moreover, the protocol permits a downloader to pre-
emptively prematurely abort an exchange if he is dis-
satisfied with the content (e.g., it is being spoofed), be-
fore having paid the bandwidth opportunity cost of the
entire exchange. This early detection forces a spoofer
to pay the transport cost of each spoofed bit, as it
denies the spoofer the bandwidth-amplifying effects of
viral distribution. The protocol requires no central au-
thority, nor any notion of identity. Using trace-driven
simulation, with traces drawn from a population of
25,000 peer-to-peer users over a six month period, we
show that our protocol functions well in practice. In ef-
fect, PFE enables a sustainable cooperative system [5]
in which only honest behavior is rewarded.

1.1 Our Motivation

Like the Web ten years ago, anonymous peer-to-peer
networks (ap2p) have crossed the boundary from cu-
riosity to reality in today’s Internet fabric. There are
dozens of unique ap2p networks in use today, the most

active of which has tens of millions of users on-line of-
fering to share tens of petabytes of content at any given
time [22]. In such networks, one anonymous user offers
to share content with others by making the content
available for download. Content is shared when an-
other anonymous user requests (by name) content that
is offered for upload. Once downloaded, the receiving
user in turn is expected to make that content available
to other users, thereby increasing its availability.

These systems effectively make two critical assump-
tions about their users:

• Users are altruistic, voluntarily contributing up-
load bandwidth proportional to their consumed
download bandwidth.

• Users are honest, truthfully advertising and deliv-
ering authentic content.

The first assumption intends to ensure that the ag-
gregate bandwidth and storage capacity of the network
scales with the number of users. The second intends to
ensure that a user who “paid the price” (in time and
bandwidth) to download content receives the benefit.

Unfortunately, as is often the case when greed and
deceit have no immediate local consequences, these as-
sumptions are not bearing out in practice. Studies
have shown that most ap2p users are freeloaders, al-
ways downloading but never uploading [1]. With re-
spect to honesty, in recent times some have begun to
inject bogus content into the network with the intent
of diverting users away from the true content [26].

Today’s peer-to-peer users are becoming increas-
ingly aware of how cheaters impact the quality of the
network. Gradually, the network “slows down” as more
and more downloaders are served by relatively fewer
uploaders. In addition, a user looking for content that
has been spoofed may be forced to download, inspect,
and discard bogus content many times in his search for
the real content. Such a process frustrates users and
places an additional load on the relatively decreasing
set of uploaders. In the end, the network will consist
only of spoofers serving up bogus content, as partic-
ipants, including freeloaders, abandon it for another
system. An ap2p network may ultimately be destroyed
by the dual cancers of greed and deceit.

1.2 Models that Work

Fortunately, the real world offers many examples of
sustainable, anonymous peer-based exchange systems.
The local swap meet, a barter-based marketplace, func-
tions as a pure ap2p network. An anonymous seller,
offering an array of goods, for example cows, is ap-
proached by an anonymous potential buyer. The buyer
is able to inspect the cows before delivering something
of value, for example chickens, to the seller, and before

slaughtering the cow only to discover that it is somehow
diseased. Moreover, the seller is able to easily inspect
the buyer’s offering for legitimacy (e.g., counting the
chickens) before releasing his cows.

In this simple example, the buyer and seller directly
satisfy one another’s requirements for value, yielding a
two-way fair exchange. Freeloading cannot occur, since
both the buyer and seller must produce something of
value in order to receive something of value: the imme-
diacy and symmetry of the exchange remove any need
for altruism. Spoofing cannot occur, since both parties
can inspect the goods and walk away if unsatisfied.
Consequently, honesty is naturally encouraged because
dishonest behavior is immediately observed and met
with no reward. The exchange, and its legitimacy, are
entirely centered around the goods transacted.

Barter introduces the challenge of matching up buy-
ers and sellers. In the simplest case, where each of
a pair of participants wants what the other is offer-
ing, the matching problem amounts to nothing more
than shouting across the courtyard. More generally,
though, it becomes necessary to find a group of buy-
ers and sellers who, between them, completely satisfy
one another’s needs. In so doing, a transaction can be
conducted by a group in a single round.

1.3 Our Approach

The protocol we describe in this paper, PFE, fol-
lows the classic model of the anonymous marketplace
described above. To download an object, a partici-
pant must also offer an object sought by another for
uploading. Transactions occur in rounds, with each
round resulting in the formation of a group of partici-
pants whose collective desires are mutually satisfiable.
The objects are incrementally self-verifiable so that a
receiver can determine early in the transaction that an
object is bogus before the transaction completes. Be-
cause a participant must offer something to get some-
thing, freeloaders are eliminated. Because a partici-
pant can determine if he is receiving spoofed content
and may thus abort the transaction, the incentive to
spoof is eliminated, ultimately eliminating spoofers.

PFE achieves two properties that today’s ap2p net-
works do not. Specifically:

• Fairness. PFE eliminates freeloaders by ensur-
ing that a user may download no more than he
uploads. In PFE, users acquire content by partic-
ipating in group-wise exchanges instead of unidi-
rectional transfers, providing content in order to
acquire content.

• Proportional damage. PFE forces a spoofer to
directly pay the transfer cost for every spoofed bit
prior to its detection. This greatly reduces the re-
alized value of large-scale spoofing. Proportional

damage is achieved as a consequence of early de-
tection, since a user determines early that an ob-
ject is bogus and will not act as an amplifier for
spoofed content.

PFE achieves these properties while retaining the
existing properties of ap2p networks. Namely, it main-
tains the anonymity of users and does not introduce
any trusted third parties.

As illustrated by the example of the swap meet, the
largest question that a system employing PFE faces
will be: can the protocol succeed in grouping users
so that, within the group, the offerings of one can be
satisfied by the needs of another? The successful de-
ployment of PFE therefore requires the system to have,
in practice, a third property:

• Liveness. Changing the basic operation of an
ap2p system from unidirectional transfer to group-
wise exchange means that users’ interests must
align for the system to be sustainable: a user want-
ing an object must at the same time offer an object
wanted by another.

Using trace-driven simulation, we show that the in-
terests of today’s file sharing users are well-aligned with
the requirements of liveness. We demonstrate that
enough exchanges to perpetuate the system can occur
using relatively small groups. For example, over 93%
of transfers can be satisfied by using groups of five or
fewer members. Such small groups further make it dif-
ficult for a cheater to interfere with the progress of
honest users. We also show that it is possible to find
exchange groups even if the population size is small.
This means that a large population can be partitioned
into many subsets while forming groups, vastly simpli-
fying the “matchmaking” process.

This paper makes three contributions. First, it
presents a protocol, PFE, that defeats cheaters in ap2p
networks by changing the fundamental primitive pro-
vided by an ap2p network from download to download-
while-uploading. Second, it compares PFE to alterna-
tive approaches, including existing fair-exchange pro-
tocols, and it analyzes the shortcomings of these other
approaches in light of the properties of ap2p networks.
Third, and finally, using traces drawn from an actual
ap2p network, it shows how well the protocol works in
practice.

1.4 The Rest of This Paper

In the rest of this paper, we present PFE in more
detail. In the next section we provide additional insight
into the motivation of cheaters. In Section 3 we present
alternative approaches and discuss their limitations. In
Section 4 we present the PFE protocol. In Section 5
we present results of trace driven simulations which

demonstrate the protocol’s liveness in practice. Finally,
in Section 6 we summarize and conclude.

2 The Motivation to Cheat

In this section, we consider in greater detail why a
user might cheat in an ap2p network. Fundamentally,
we have four types of cheaters:

• Cheap freeloaders: the cheap freeloader seeks
to obtain content with the minimal possible cost,
valuing his upload bandwidth more than his altru-
ism. In current ap2p systems, the cheap freeloader
is common [1].

• Poor freeloaders: the poor freeloader seeks to
obtain content, is willing to exchange valid content
for it, but has no valid content to exchange. Poor
freeloaders do not exist in current ap2p systems,
since there is no notion of exchange.

• Protective spoofers: a protective spoofer seeks
to make it difficult for users to obtain a specific
piece of content. To do so, the protective spoofer
may advertise a spoofed copy of that content in the
hope of attracting users away from the valid con-
tent. Protective spoofers may be willing to spend
significant resources to accomplish their task. In
today’s ap2p systems, a protective spoofer can ex-
ploit the lack of integrity checking in systems to
amplify his attack through viral propagation.

• Malicious spoofers: the malicious spoofer is
an irrational user that seeks to damage as many
transfers as possible, either to make it difficult for
users to complete transfers, or to cause users to
waste bandwidth. A malicious spoofer is likely
to be constrained in the amount they are will-
ing to invest in order to create trouble for others,
and seeks to maximize disruption with minimal
expended resources.

From the standpoint of the cheater, his actions have
one of two effects. He causes “bandwidth damage’
when he forces a victim to spend download bandwidth
without receiving valid content. He gains a “content
advantage” when he obtains valid content without con-
tributing any upload bandwidth.

To be effective at dealing with cheaters in ap2p net-
works, a protocol must combat both content advan-
tage and bandwidth damage at the same time. The
freeloader loses his content advantage as soon as he is
forced to spend upload bandwidth to receive content.

In general, it is impossible to eliminate all band-
width damage from the Internet, where messages can
be arbitrarily directed. Consequently, it is more rea-
sonable to expect that damage should be proportional

to the cost of creating it. An undesirable property
would be to permit a single incident of bandwidth dam-
age to be amplified through the unwitting participation
of other parties (as could happen when content is not
verified prior to acceptance).

3 Related Work

Malicious and greedy users have plagued shared
computing systems for decades. Over time, several
broad strategies have emerged to eliminate or contain
their effects. We now discuss the strengths and weak-
nesses of these strategies as they relate to anonymous
peer-to-peer file sharing systems.

Identify the offenders, and punish them. The
simplest strategy for dealing with offenses such as
spoofing or freeloading is to identify the perpetrators
and punish them. To do this, the actions of a partic-
ipant must be irrefutably tied to the identity of that
participant so that misbehavior can be identified, and
punishment meted out.

We often rely on centralized or hierarchical crypto-
graphic authentication schemes, such as Kerberos [29]
and public key infrastructures [8], to provide strong
identity. Privacy concerns mean that participants may
resist having a permanent identity associated with their
actions, especially if that identity is tied to their real-
life identity. Moreover, these schemes ultimately de-
pend on a single, trusted root authority to generate
new identities and attest to their authenticity. Accord-
ingly, systems that employ them have a single point of
failure. The systems may also suffer from scalability
problems if the number or growth rate of active iden-
tities is large. Although decentralized authentication
schemes exist (e.g., the PGP web of trust [33]), the lack
of a single mutually trusted authority makes it difficult
for strangers to trust in each others’ purported identity.

Reputation systems [15] provide an alternative to di-
rectly identifying and punishing offenders. These sys-
tems indirectly reward a participant for good behavior
and punish them for bad behavior by publishing a rep-
utation metric that other participants can influence.
For example, Ebay [18] allows users to add or subtract
from the reputation of other users with whom they have
engaged in transactions: users with poor reputations
are presumably shunned. Similarly, Kazaa [22] rewards
users that upload content or simply offer many high-
quality files by increasing their “participation level”:
users with higher participation levels are given higher
download priorities.

Unfortunately, a dedicated cheater can defeat a rep-
utation system. If users can create new identities with-
out cost (the Sybil attack [16]), they can invent many
identities that artificially inflate each others’ reputa-
tion. Alternatively, a user can simply abandon a tar-

nished identity and create a new one from scratch.

Make it expensive to misbehave. Rather than
punishing offenders for past offenses, some systems
make it monetarily expensive to misbehave. In these
systems, a user must spend currency to receive service.
In return for providing service, a user receives currency.
The currency in these systems may be backed by real-
world currency (such as in Netbill [11] or Chaumian
ecash [9]), or it may be a fictitious, internal unit of
currency that is useless outside the scope of the sys-
tem (such as in Mojonation [25]). Unlike barter sys-
tems, currency systems don’t suffer from the problem of
matching users’ wants and offered goods, since money
is a good that everybody wants.

Electronic currency systems suffer from four prob-
lems: counterfeiting, high transaction costs, double
spending, and inflation. Counterfeiting can be coun-
tered through the introduction of a centralized, trusted
authority that mints and authenticates electronic coins.
However, such systems create problems similar to those
of centralized authentication schemes. High transac-
tion costs may one day be eliminated through the use
of micropayments [20], but at present a standardized
protocol with widespread commercial and governmen-
tal support has not yet emerged, limiting adoption.
Double spending can be combated by either requiring
that coins be reconciled against centralized accounts as
they are spent, or the use of identity schemes in which
offenders’ identities are revealed when they double-
spend. Fundamentally, both solutions are plagued
with the same problems found in central authentica-
tion schemes.

The phenomenon of inflation is relatively new in
computer systems, and occurs whenever parties are
able to assert value without having to prove it. For ex-
ample, Mojonation [25] is an ap2p file sharing network
that credits users for uploading. Unfortunately, Mo-
jonation credits uploaders based on attestations from
downloaders: after a successful transfer, the down-
loader attests that the uploader should be rewarded
with credit. Because these attestations could not be
validated in practice, attackers can simply create iden-
tities that would attest to transfers which never oc-
curred, in effect creating money for nothing.

Explicitly verify important properties. Cur-
rency and fair exchange systems can prevent freeload-
ers, but they do not prevent spoofing. In fact, cur-
rency may increase the incentive to spoof if spoofers
receive compensation for spoofed content. To defeat
spoofers, users must be able to verify the integrity of
content they download. Systems designers typically
rely on cryptographic hashing to provide integrity. For
example, many distributed file systems and file sharing
systems ensure integrity by mandating that the name

of a file (or a file block) should include a cryptographic
hash of its content [2, 10, 23, 14, 17, 31].

Several researchers have proposed using peer-to-
peer networks to provide a cooperative backup ser-
vice [12, 13, 24]. Spoofing is much more insidious in
backup systems than in file sharing systems, as users
must continually re-verify the integrity and availability
of their backed-up content arbitrarily far into the fu-
ture. In file sharing, integrity only needs to be verified
once, at the time a transfer takes place.

Align local and global interests. The essence
of PFE is that it aligns the local interests of partic-
ipants with the global interests of the system by re-
quiring that participants contribute content in order
to receive content. Other systems have considered the
problem of aligning local and global interests. For ex-
ample, SETI@Home users voluntarily donate comput-
ing resources because their local interests are naturally
aligned with the global interests of the system – namely
the discovery of extraterrestrial life forms. At another
level, Akella et al. show that TCP congestion control
in older Reno variants of TCP exhibit stable global
properties in the face of greedy individuals, but that
more recent variants can result in an inefficient global
network given greedy local behavior [3].

Enforce fair-exchange. When we began this
work, we felt that we would simply need to adapt one
of the many existing fair-exchange protocols that have
been proposed in the cryptography and security liter-
ature. As we delved further into these protocols, we
began to realize that, irrespective of their implemen-
tation complexity and runtime overheads, these proto-
cols were unsuited for use in ap2p networks. At once,
they provided a level of transfer integrity greater than
necessary for ap2p networks, and a level of bandwidth
protection that was insufficient. In Section 4.5, after
having described our protocol, we provide a detailed
analysis of fair-exchange protocols, specifically point-
ing out how they are unsuitable for use in ap2p net-
works.

4 The Protocol

In this section of the paper, we describe our Pretty
Fair Exchange (PFE) protocol. First, we describe the
complete protocol to give a high-level, functional sense
of how it operates. Next, we deconstruct the protocol
to provide greater insight into why we chose particu-
lar technological elements for inclusion in the protocol,
and why conventional fair-exchange protocols are un-
suitable in our context.

As its name suggests, our protocol is only “pretty”
fair, in that it cannot guarantee that freeloaders will
see no content advantage or that spoofers will not be
able to cause damage. Because of our self-imposed

PFE(wanted file wf, owned files {of}) {

while (!done) {

(dst d, src s, file to send f) =

joincircle(wf, of);

for (i = 1 to num blocks in file) {

send(d, f[i]);

wf[i] = receive(s);

if (!verify_block(wf[i]) {

next while;

}

}

if (verify_file(wf)) {

of += wf;

done = true;

}

}

}

1

2

3

4

5

6

Figure 1: The Pretty Fair Exchange (PFE) proto-
col. This pseudocode illustrates how PFE functions, from
the perspective of a participant. The inlined numbers label
elements of the protocol that we discuss in the body of the
paper.

constraint of not introducing centralized or globally
trusted components to the network, we believe it is
impossible to make such guarantees. A freeloader will
always be able to gain some advantage, since in an
exchange, somebody has to “transmit first”, exposing
themselves to bandwidth damage and giving others a
potential content advantage. Similarly, a spoofer will
always be able to cause some damage, since he can al-
ways send bogus content, causing the other party to
waste effort downloading it.

However, given our constraints, our protocol sub-
stantially reduces the potential impact of these attacks.
Freeloaders gain at most a single block of content and
bandwidth advantage, and spoofers must spend re-
sources proportional to the damage they wish to cause.
We now turn to the details of the protocol that make
this possible.

4.1 Pretty Fair Exchange

Using pseudocode, Figure 1 presents the PFE pro-
tocol from the perspective of one of its participants.
First, the user indicates to his file-sharing application
that he is interested in acquiring a particular piece of
content. The application invokes PFE, giving it a de-
scription of the desired file, and a pointer to the set of
files the user is willing to barter for it (1). Next, PFE
invokes join circle, a protocol component that finds
and establishes a group of participants that mutually
satisfy each others’ interests (3). The outcome of this
group establishment phase will select a file that the

user must provide to another member of the group and
that destination’s name, and the name of the member
of the group that will act as a source for the file the
user wants.

Once the group has been established, PFE enters
into the exchange phase. During this phase, each mem-
ber of the group alternates sending a block to its des-
tination and receiving a block from its source (4); we
assume that all files are split into fixed-sized blocks,
and that all participants agree on the block size dur-
ing the group establishment phase. Note that blocks
are sent in sequential order, always starting with the
first block of the file. The exchange phase continues
until all members of the group possess the files they
want, or until the group falls apart because a member
has cheated or has become unavailable. For simplicity
of exposition, we temporarily assume that all files are
of the same size. Spoofing is detected on a block-by-
block basis: after a member receives the next block of
his file, he incrementally verifies that the block is what
he expected (5), and only proceeds with the exchange
if he continues to receive valid blocks. There are many
ways a participant could incrementally verify a file; we
discuss details below.

After PFE has downloaded all of the blocks of the
desired file, the entire file is verified for correctness,
again using whatever verification techniques are appro-
priate and available. If the file successfully verifies, that
file is added to the set of files that can be exchanged in
the future, and the protocol terminates (6). By verify-
ing the file before trading it in the future, we prevent
the viral propagation of spoofed content. If the file
does not verify successfully (or if a block failed to in-
crementally verify during the exchange phase), PFE
re-attempts group establishment, making sure to com-
pose the new group differently than the previous, failed
group (2,3).

4.2 Drilling Down

PFE relies on a small set of technical building blocks,
each of which strengthen our desired goals of fairness,
proportional damage, and liveness. We now describe
these building blocks, and the properties they add.

Verification (possibly incremental). Verifica-
tion (bullets (5,6) in Figure 1) allows a receiver to
determine whether content is genuine. Verification pre-
vents viral propagation, and therefore makes protective
spoofers spend resources proportional to the number of
transfers they seek to disrupt. Incremental verification
is simply an optimization over verification which limits
the bandwidth damage a participant incurs during a
given exchange attempt.

The most appropriate mechanism to perform ver-
ification likely depends on the nature of the file it-
self. For example, if the file is a media stream, the

user could listen to the stream in real-time as it is
being downloaded, canceling the exchange if the file
isn’t what he expected. Alternatively, the user could
rely on a public, trusted database of incremental file
hashes (e.g., Merkle trees), although this would intro-
duce reliance on a trusted, centralized service into the
ap2p network.1 PFE doesn’t take a specific stance on
what verification mechanism should be used, but in-
stead provides a hook into which verification mecha-
nisms can be plugged.

Bandwidth barter. To prevent freeloading, we
use a mechanism which ensures that somebody down-
loading content provides commensurate upload band-
width. Bullet (4) of the protocol shows how we do
this. Each party in the exchange makes sure that they
bound their bandwidth damage to one block, by only
sending their next block once they receive the previous
block they are owed. A freeloader that wishes to re-
ceive all of the blocks of a file during a single exchange
is forced to send nearly all blocks of the file they owe.
Bandwidth bartering also bounds the content advan-
tage that freeloaders can gain during a single exchange
to a single block. Reducing the block size therefore
reduces the content advantage that a freeloader can
obtain during an exchange, but also reduces the band-
width damage to which a participant is exposed.

Controlling block transmission order. Given
that we split content into blocks, we need to decide
on the order in which blocks are sent during an ex-
change. If a freeloader can request a specific order,
that freeloader can exploit the one-block content ad-
vantage that bandwidth bartering permits to obtain
the entire file, by downloading successive blocks in suc-
cessive exchanges. By picking a globally enforced, fixed
transmission order for blocks (in our case, a sequential
order starting at block 1 and ending at the last block
of the file), freeloaders have no sustainable content ad-
vantage, since the only block they can get without up-
loading a block is the first block of the file. They need
to upload blocks to get latter blocks in the file.

A deterministic transmission order permits mali-
cious spoofers to cause bandwidth damage across ex-
changes, however. The spoofer can upload all but
one of the blocks it owes, forcing the recipient to re-
download nearly the entire file during the next ex-
change to obtain that last block. Controlling block
transmission order makes sense if the number of mali-
cious spoofers is small, since with high probability, a
victim will be able to join a non-malicious group on its
next attempt. If the number of malicious spoofers in
the system is high, there is nothing that any system
can do to prevent them from causing substantial dam-
age, as with all open systems. We return to this issue

1Such hash services are beginning to emerge in practice, for
example http://www.bitzi.com.

has a,
wants b

has e,
wants a

has d,
wants e

has c,
wants d

has b,
wants cb

a

e

d

c

Figure 2: Exchange groups, or “circles”. We gen-
eralize pairwise barters to exchange groups formed out of
circles: each user in the circle provides content in one direc-
tion, and receives content from the other direction. Circles
allow greater flexibility than pairs to satisfy exchange con-
straints.

in Section 4.4.
Exchange groups. PFE relies on barter: to ob-

tain content, a user must provide content that some-
body else wants. Pairwise exchange is a simple way
of bartering, in which two peers directly satisfy each
other’s needs. However, as we will show in Section 5,
pairwise exchange does not always provide adequate
liveness. Fortunately, we can generalize pairwise ex-
change to group exchange, by introducing the notion
of an “exchange circle” (Figure 2). In a circle, each
participant provides content to the next person in the
circle, and receives content from the previous person in
the circle. Verification, bandwidth bartering, and de-
terministic block transmission ordering all generalize
from pairs to circles. However, if a spoofer joins a cir-
cle, the damage caused by that spoofer is amplified by
the number of participants in it, pressuring the system
to prefer small circles during group establishment.

4.3 Forming Circles

PFE relies on the ability for peers to organize them-
selves into circles that mutually satisfy each others’ in-
terests during an exchange, as shown in Figure 2, but it
does not specify a particular architecture or algorithm
for doing this. We believe this is a separable part of
the overall protocol, in that exchange group formation
could be realized through any number of mechanisms.
Some possibilities include:

Centralized matchmaking: The simplest archi-
tecture for forming exchange groups is for all peers to
upload a list of files they possess and a list of files they
are interested in to a centralized “matchmaker” ser-
vice. Given such global information, finding circles is
a matter of simple graph algorithms. Each peer in the
system is a node in the graph, each file in the system
is another node in the graph. The “owns-file” relation-
ship is represented by a directed arc from a peer to a

file, and the “wants-file” relationship is represented by
a directed arc from a file to a peer. Forming exchange
groups is a matter of finding circuits in the resulting
bipartite graph. Centralized matchmaking has the ad-
vantage of complete information, but it has the obvi-
ous disadvantage of being a scalability bottleneck and
a single point of failure in the system.

Partitioned matchmaking: Instead of having a
single centralized matchmaker, an alternative is to have
many dedicated matchmakers, and to partition the
population of peers amongst these matchmakers. As
we will show in Section 5, even with small population
sizes, it is possible to form groups and to make the
system live. This suggests that a partitioning strategy
would work well, since each partition is effectively a
separate, small population of users. Partitioned match-
making trades optimality (global information) for ro-
bustness (no single points of failure).

Decentralized matchmaking: Instead of having
dedicated, partitioned matchmakers, fully distributed
equivalents could exist. One possibility is to have peers
volunteer to be matchmakers, in a manner similar to
how some peers in existing P2P file-sharing systems
promote themselves to be “supernodes”, indexing con-
tent to satisfy queries. Another possibility would have
peers organize into an overlay, and to broadcast their
“owns-file” and “wants-file” sets across the overlay;
peers would listen to broadcasts as well as sending
them, searching for possible circles and proposing them
to each other as they form. A final possibility would be
to use distributed hash tables (DHTs) [30, 27] to store
the “owns-file” and “wants-file” sets of each user in a
distributed, inverted index: given the name of a file,
the DHT would return the set of users that want the
file. Given the name of a user, the DHT would return
the set of files that user owns.

We do not advocate one mechanism over another.
In Section 5, we present trace-driven simulations that
show that there is adequate opportunity to form circles
using any of these mechanisms.

4.4 The Effectiveness of PFE

Returning to our two classes of cheaters (freeloaders
and spoofers), we now consider the degree to which
PFE defeats them, and the potential for an honest user
to be harmed in a system that uses PFE.

4.4.1 Attacks by Freeloaders

The combination of bandwidth barter and determin-
istic block transfer order limits the potential gain of a
freeloader to a single block. Freeloaders can easily ob-
tain the first block of any file with no upload cost, but
to acquire subsequent blocks, the freeloader must spend
upload bandwidth proportional to downloaded content.

Freeloaders, as they exist in today’s ap2p networks, can
no longer exist.

A freeloader might choose not to provide the last
block of its file during a transfer, in effect becoming a
spoofer, and forcing the recipient of that file to re-fetch
the entire file from another host. However, a freeloader
has little incentive to do this, since they would save
very little bandwidth by doing so, given that they have
already uploaded virtually all of the file. A freeloader
is greedy, not malicious, and bandwidth bartering has
virtually eliminated the profitability of their greed.

4.4.2 Attacks by Spoofers

Verification prevents spoofers from being able to am-
plify the damage they cause by tricking unwitting peers
from further propagating spoofed content. Because of
this, a spoofer who wishes to inflict damage on a partic-
ipant must spend resources proportional to the damage
he wishes to cause.

The most damage a spoofer can cause to a partic-
ipant during an exchange happens when the spoofer
causes the participant to receive all but one block of
the file, forcing him to attempt to re-acquire the en-
tire file during another exchange. If subsequent ex-
changes are also tainted by having a spoofer as a mem-
ber, the damage to the participant accumulates. From
the perspective of an honest participant, the amount of
damage they are likely to experience is related to the
probability that a spoofer exists within a group. If the
probability that a spoofer exists within a group is p,
then on average, a participant will successfully receive
the file on exchange attempt number 1

(1−p) , assuming

the participant is unable to identify and blacklist the
spoofer during a failed exchange.

The probability that a spoofer joins a particular
group depends on a number of factors: the size of an
exchange group, the number of files the spoofer offers
(regardless of whether they actually possess the file),
and the number of files the spoofer pretends to be in-
terested in. The larger the group size, the more likely
that spoofer is to join the group. Additionally, if a
spoofer sabotages a large group, the spoofer effectively
amplifies his damage by the number of participants in
the group. For this reason, the system should prefer
smaller groups.

4.5 Why Cryptographic Fair-Exchange
Protocols Are Unsuitable

Fair-exchange protocols have been thoroughly stud-
ied in the literature over the past decade, with ap-
plications in contract signing [19], certified delivery
of content [32], and electronic payment for electronic
goods [11]. Fair-exchange protocols guarantee that
during an exchange, no involved party can gain an ad-
vantage over other parties, even if the protocol halts

for any reason at any time. To understand why ex-
isting fair-exchange protocols are poorly matched for
the exchange of content in an ap2p network, we review
the properties of these networks, and describe how fair-
exchange is at odds with them.

Third parties are unwilling to participate in
the exchange. Most existing fair exchange protocols
involve the use of a trusted third party which acts as
an escrow agent. An escrow agent may be required to
download and store copies of the exchanged content,
both to verify that the content is valid, and to reveal
the content in the event that one of the parties re-
fuses to do so.2 Accordingly, escrow agents would have
substantial bandwidth and storage requirements, cre-
ating a substantial barrier to deployment. Moreover,
in an ap2p network, third parties would invariably as-
sume some type of responsibility for the legitimacy of
the content as it may relate to issues of copyright and
ownership.

Anonymity must exist globally, not just
transactionally. Variants of fair-exchange protocols
seek to preserve the anonymity of a transaction: par-
ticipants can exchange content without revealing their
identity to each other, or without revealing the na-
ture of transacted objects to non-participants. How-
ever, many of these systems (particularly those involv-
ing electronic commerce) assume that participants have
long-lived identities, either so that misbehavers can be
exposed and punished, or so that purchase orders can
be drawn from participants’ accounts. In an ap2p sys-
tem, participants may not have any meaningful or per-
sistent identity.

Exchanges may involve groups, not just pairs.
Although liveness may require that the system facil-
itates exchange groups with more than two people,
many fair-exchange protocols only provide pair-wise
fair exchange.

Practical solutions are required. Ap2p systems
are real, and they should only rely on practical technol-
ogy. Many of the proposed fair-exchange protocols rely
on exotic technologies (such zero-knowledge proofs [7]
or homomorphic pre-images of signatures [4]), which
may be impractical in real-world situations, and which
do not have time-tested implementations. For an ap2p
system to be successful, it must be deployable, and as
a result, it must limit itself to practical technologies.

Fundamentally, existing fair exchange protocols are
only concerned with eliminating any advantage that
might be gained by a party. They have no notion of
damage, and may even make it relatively easy to cause

2Optimistic verifiable fair-exchange protocols exist that only
involve the escrow agent to resolve disputes, but these protocols
are limited to the case in which the objects being exchanged are
digital signatures on publicly known objects [4, 6], and as such,
are not appropriate for the exchange of arbitrary files.

damage (e.g., through inaction) to another. Conse-
quently, these protocols only serve to further the inter-
ests of the spoofer.

4.6 Summary

This section has presented Pretty Fair Exchange
(PFE), a simple protocol built out of easily-understood
components that prevents freeloaders and mitigates the
damage caused by spoofers to the extent possible. In
the next section of this paper, we consider the behavior
of the protocol in light of its liveness constraint: does
introducing the requirement that participants find an
exchange group with matched interests lead to reason-
able transaction progress in real networks?

5 Using Trace Driven Simulation to
Demonstrate Liveness

In this section, we use trace-driven simulation to
evaluate the liveness property of PFE. In considering
liveness, we seek a system that emulates the properties
of a lively exchange in the real world. Specifically, in a
lively exchange, goods move smoothly in a timely fash-
ion and with minimal complexity. Moreover, wealth is
plentiful, thereby discouraging theft. Lastly, the mar-
ketplace functions well even with a modest number of
participants, enabling it to scale down as participants
exit, and scale up by means of partitioning the system
as users enter.

As these qualities apply to anonymous peer-to-peer
exchange networks, we answer the following questions
in the context of PFE:

1. Are users able to acquire the content they
want with reasonable delay? This question
corresponds to can a user join a group that will
soon “close” in a transitive exchange? Users may
become extremely dissatisfied when infinite, or
even very long, waiting times are the norm.

2. Will poverty motivate users to cheat? PFE
rewards those with popular content and isolates
those without. If this isolation is extreme, users
will be encouraged to “act poor,” advertising con-
tent that they do not have in order to attract
others to trade with them. Although this will be
detected during verification, it causes bandwidth
damage to the entire group. On the other hand,
if users are able to acquire the content they want
with relatively high confidence, then they will have
less motivation to cheat.

3. Can complete groups be formed with rel-
atively few members? Small groups can be
formed quickly, and can complete exchanges with

greater simplicity. Moreover, in a small group, rel-
atively fewer members are impacted by a single
cheater (recall that the group-wise transaction is
aborted if a single member cheats).

4. Can the marketplace remain live even with
a relatively modest number of participants?
Here, we are concerned with how many users must
participate in the network in order for it to remain
live. A network that makes progress with fewer
users is more appealing than one that requires a
massive membership, for two reasons. First, it re-
quires a smaller critical mass and therefore has a
larger operating range. Second, it enables a net-
work of brokers who can work relatively indepen-
dently of one another.

As we show in the remainder of this section, the an-
swer to each of these questions is yes. Specifically, in a
trace of over 1.6 million file requests, over 94% of them
are eventually satisfied, with nearly 28% immediately,
and over 50% in under one day. Of the nearly 22,000
users traced, over 86% are able to download all of the
files they seek, and over 98% are able to download at
least 90% of their desired files. Over 12% of all trans-
fers occur in groups of size two, and all transfers can
occur in groups of size five or less. Lastly, these same
trends hold even when the population size is halved.
At about 2000 users, the system begins to break down,
and at 500 users, nearly 60% of requests go unfulfilled.

5.1 Methodology

Our trace driven simulation is based on a measured
workload [21] of the Kazaa file sharing network [22] .
We monitored and recorded all Kazaa traffic flowing
in and out of a large University over a 203 day period
between May and December of 2002. The essential
statistics about the trace are shown in Table 1.

In analyzing the traces, we make several additional
assumptions which are not reflected directly in the
trace, but which will hold in a system using PFE. First,
we assume that any file downloaded by a user is per-
manently made available by that user for upload. Al-
though this is not true in the system measured, two
factors make it reasonable: (i) modern disks are suffi-
ciently large to hold all downloaded content, and (ii)
users recognize offered content as currency worth sav-
ing.

Our next two assumptions go to the issue of seed-
ing content. In a real system, files are seeded into the
system by some out-of-band method, such as obtain-
ing them from an FTP server. Since this seeding is
outside the scope of PFE, we follow a simpler seeding
protocol. Firstly, when a new user comes on-line, we
allow them to obtain the first ten files they request “for
free,” recognizing that a user must first have in order

trace length 203 days
of requests 1,640,912

of unique files 633,106
of unique clients 24,578
bytes transferred 22.72 terabytes

largest file: 2.05 GB
smallest file: 1 byte (!!) file sizes
median file: 3.86 MB

bytes transferred 22.72TB
content demanded 43.87TB

median: 19.6 minutes completion latency for
<10MB files mean: 30.13 hours

median: 24.35 hours completion latency for
>100MB files mean: 4.82 days

in under 1 hour: 30% % requests to <10MB
files that complete in under 1 day: 90%

in under 1 hour: 10%
in under 1 day: 50%

% requests to >100MB
files that complete

in under 1 week: 80%

Table 1: Trace statistics. These statistics reflect the
behavior of the Kazaa system as experienced by the traced
users.

to get. Second, the first time a file is requested by any
user, we assume that the file is already in existence and
make it available to the user; in fact, we actually allow
the first five transfers of any file to occur for free. Our
choices of ten and five are arbitrary, and we have con-
firmed that our results are not sensitive to the degree
of seeding, as long as some seeding occurs.

Our final assumption concerns the “cost” and
“value” of content sought or offered by participants in
terms of the bandwidth consumed. There is significant
diversity in the files traded in file sharing networks [28]
with file sizes spanning six orders of magnitude. Images
and text files typically are a few kilobytes in size, most
audio clips are approximately 3MB, and video files may
be as large as a gigabyte. Given this, a user is likely
to be unwilling to upload a gigabyte video file in or-
der to receive a kilobyte text file. Consequently, our
simulator splits large files into multiple one megabyte
chunks. When a user desires a large file, he must en-
gage in a separate exchange for each chunk. However,
for purposes of the simulation, we do not consider a file
request as “completed” until each and every chunk has
been requested and returned to the user. Thus, a single
request for, say, a 100MB file, will involve 100 separate
exchanges (made in parallel), but will be counted as a
single completion.

With these assumptions, we play back our trace into
our simulation one record at a time, in time order. For
each transfer that occurs in the trace, we add the ref-
erenced file to the set of files the user desires, and then
we globally search the system to find an appropriate
group whose offerings satisfy each others’ desires. If
we find such a group, we simulate an exchange, con-
verting the exchanged files from desires to offerings for
the appropriate users. We continue to search for groups

�

���

���

���

���

���

���

��	

��

���

�

������ ����� ���� ��� � �� ��� ����

���������	�
���������
�����
�������

�
��
�
�
�
�
�
��
��
	
�
�
��
��
�

Figure 3: Completion rate and latency. Users are
able to immediately get files they need 28% of the time,
but some files take days or weeks to acquire. 94% of files
are ultimately acquired. The average delay is 15.8 days and
the median is about 95 minutes.

until none are left, at which time we feed the next trace
record into the simulator. If there is a choice of groups,
we prioritize small groups over large groups.

Our simulation is concerned only with the proper-
ties of the groups themselves, not with their ensuing
transfer properties. Consequently, we do not model the
bandwidth, latency, or reliability attributes of an ex-
change. Instead, exchanges occur instantaneously and
reliably as soon as they become possible. Moreover, we
do not directly simulate the impact of cheaters: we as-
sume that users offering content are genuine. In prac-
tice, freeloaders would be detected early in a trans-
fer, since they would not offer genuine content, and
spoofers would force some fraction of transfers to fail,
causing bandwidth damage and therefore overhead to
the system, but not ultimately preventing progress.

5.2 Do users get the content they want
and do they get it quickly?

In our simulation, we add a file to a user’s desired
set at the time the user requested that file in our trace.
The user may be lucky, immediately finding a group
having a member needing a file that the user has, or he
may have to wait until such a group becomes available.
If the user is very unlucky, a group will never form, and
the user will never receive the file requested.

In Figure 3, we plot a CDF of the fraction of de-
sired files that are successfully acquired as a function
of the time it takes to form the groups that resulted in
their acquisition. The graph shows that 94% of files are
successfully acquired by the end of the trace, indicating
that users’ wants are indeed eventually satisfied. More-
over, we see that 28% of the time, a user who wants a
file is able to acquire it immediately. However, if the
user doesn’t find his file right away, he may often have
to wait a day to acquire it. In some cases, the wait
may be as long as weeks.

Figure 4 illustrates the impact that file size has on

�

���

���

���

���

���

���

��	

��

���

�

� �� ��� ����

�������������	�
��
���

�
��
�
�
�
�
�
��
��
�
�
�
��
��
�

Figure 4: Acquisition rate vs. file size. Users’ desires
for small files are acquired over 95% of the time. Large
files are less likely to be acquired, but fortunately, the vast
majority of files requested in the trace are small.

completion. Smaller files, which for example represent
audio, have a completion rate of over 95%. In contrast,
the larger video files enjoy a completion rate of between
60% and 70%. In practice, a higher completion rate is
indicative of a file’s popularity. A request for a popu-
lar file is more likely to close a group than one for an
unpopular file because it is more likely that there ex-
ists another user offering that more popular file. Simi-
larly, an offering of a popular file is more likely to close
a group than that of an unpopular file. This greater
likelihood of closing a group manifests itself in terms
of waiting time, since a user would be expected to wait
less when requesting or offering a popular file.

This behavior becomes evident by viewing the wait-
ing time for small files separately from that for larger
files. From Figure 5, which shows separate completion
rates and latencies for small files and large files, we see
that the system is relatively responsive for the smaller
ones. For small files (<10MB), the average comple-
tion time is 5 days and the median is 18 hours. For
large files (>100MB), the average is 20.5 days and the
median 21 days.

By way of comparison, the actual system we traced
completed only 30% of its requests to small files in un-
der and hour, and 10% took longer than a day. Overall,
the measured system had an average small file comple-
tion latency of 30.13 hours and a median of 19.6 min-
utes. In contrast, only 10% of requests to larger files
completed in less than an hour, 50% in less than a day,
and 20% more than a week. The average completion
latency for large files was 4.82 days and the median was
24.35 hours.

From this data, although we conclude that PFE de-
livers content slower than existing unfair protocols, the
time delay for delivering files is within the range that
users of today’s systems tolerate. Furthermore, these
delays will lessen as the system grows in population
size, and in return for these delays, users are shielded
from cheaters.

�

���

���

���

���

���

���

��	

��

���

�

������ ����� ���� ��� � �� ��� ����

���������	�
���������
�����
�������

�
��
�
�
�
�
�
��
��
	
�
�
��
��
�

�
���
������������

�������
�����������

Figure 5: Completion rates and latencies broken
out for small files and large files. Requests for the more
popular small files complete much more quickly (average of
5 days, median of 18 hours) than for larger ones (average
of 20.5 days, median of 21 days).

5.3 Will poverty motivate users to cheat?

As mentioned, if users with less content are locked
out of groups because they can’t satisfy others as well
as richer users, they might be motivated to fabricate
offers. Although verification will detect such activity,
it is nevertheless undesirable as it incurs damage to the
users who are spoofed. In terms of the traces, relative
poverty would manifest itself as a non-uniform distri-
bution of completions across the user population.

In Figure 6, we plot the distribution of completion
rates across users. This graph shows that most users
(86% of them) are able to successfully acquire all files
that they are interested in. No user is completely
stranded: the worst case user acquires 35% of the files
he wants. Although there does exist a small subset
of users who get fewer files than they want, the ma-
jority of users are completely satisfied, indicating that
the system does not punish the poor, coercing them to
cheat by lying about their content.

By way of contrast, approximately 66.2% of trans-
actions in the traced Kazaa system failed. This poor
success rate is partially due to the fact that peers in
the system are overloaded because of freeloading, and
partially because users do not make previously down-
loaded content available to others. Despite its rather
poor success rate, the system we measured has man-
aged to attract millions of users. From this, we con-
clude that users in a system with PFE could achieve
substantially better service than they do today.

5.4 Can groups be small?

For practical reasons, it is desirable to bound the
size of exchange groups. Large groups require more co-
ordination, both to form them and to complete the ex-
change. Moreover, since a single cheater can cause the
exchange to abort, the more participants in a group,
the greater the impact of a single cheater. Conse-
quently, it is important to understand whether groups

��

���

���

���

���

���

���

	��

��

���

����

��

� ��� ��� ��� ��� �
� ����

�������

�
��
�
�
	
�
�

�
��
�

�
��

�
�

Figure 6: Completion rate distribution across
users. The percentage of users able to achieve a given
completion rate. More than 86% of users are able to down-
load 100% of their desired files. 98% of users are able to
download at least 90% of their desired files.

tend towards the larger or the smaller. We would like to
understand the system’s liveness properties when the
group size is limited in order to determine if there is a
cap value small enough to permit reasonable closures,
yet large enough to sustain liveness.

In order to establish the effect of group size, we
played back the traces several times with different max-
imum group sizes and observed the system’s behavior.
To implement a maximum group size in the simula-
tor, we simply restricted the search algorithm so that
it would not attempt to form a group larger than the
maximum. For example, with a maximum group size
of three, the simulator would seek cycles in a graph of
“wants and offers” of length no greater than three for
each new want or offer introduced.

Figure 7 shows the fraction of users’ desired files
that are successfully acquired as a function of the max-
imum permitted group size. Limiting the system to
pairwise exchanges noticeably degrades system behav-
ior. In contrast, there is no benefit in allowing groups
of more than five members. From this, we conclude
that a practical group construction algorithm can be
limited to constructing relatively small groups (≤ 5
members), but that there is substantial benefit to sup-
porting groups having more than two members.

Turning to the distribution of group sizes in a sys-
tem having a maximum group size of five, we see from
Figure 8 that the likelihood of participating in a given
group size is nearly uniform. In contrast, since the clos-
ing of a larger group facilitates more transfers, their
impact on the overall completion rate is largest. Even
though we would prefer to restrict a system to only
relying on pair-wise exchanges, we found that group
exchanges with more than two participants are neces-
sary for the liveness of the system.

���

���

���

���

���

���

����

� 	
 � � � � � ��

���������	
�����
�

�
��
�
�
�
�
�
��
��

�
�
��
��
�

Figure 7: Completion rate vs. maximum group
size. Even if we bound the maximum size of groups to
five, users still acquire 95% of the files they want.

��

��

���

���

���

���

���

���

� � � �

��������	
���
����������	
�����

�

�
�

�
�

�

��	
��
�

�����
�������

Figure 8: Distribution of groups and transfers for
a system in which groups can be no larger than five.
With a bounded group size, the distribution of actual sizes
(% Groups) is relatively uniform. In contrast, the larger
groups facilitate more transfers (% Completions), with the
largest number of transfers occurring in groups of size five.

5.5 Is a small marketplace sufficient?

How many users must participate in a system be-
fore that system becomes viable? If this number is
too large, the system will fail, as it will never attract
the “critical mass” of users necessary to match inter-
ests. Conversely, if the number can be small, then it
becomes feasible to partition users across brokers, en-
abling multiple brokers to serve the system in practice.
To explore the issue of population size, we sub-sampled
our trace to extract out smaller population sizes.

In Figures 9 and 10, we show the completion rate
and time of the simulation as a function of the popula-
tion size of participating users. The first graph allows
us to compare the percentage of requests completed
for a given latency, and the second to see the fraction
of requests that complete after about a day, and by
the end of the simulation. From both figures, we see
that system behavior changes relatively little until the
population drops to below about 8000. At about 2000,
the completion rate and latency degrades substantially,
suggesting that the system reaches its critical mass
with around 5000 users. In “Internet” terms, this is

�

���

���

���

���

���

���

��	

��

���

�

������ ����� ���� ��� � �� ��� ����

���������	
����	
�
������

�

�
�
�
�
�
�
��

�
�
�
�
��
��
�

���
����

���
�����

�

���������

����

Figure 9: Latency vs. completion rate. Time re-
quired to satisfy a given fraction of the population’s desires,
for various population sizes.

��

���

���

���

���

���

���

	��

��

���

����

� ���� ���� ����
��� ����� ����� ����� ����� �
��� �����

���������	
���

�

�

�
�

�
��

�
�
�
�
�

�

�

�
��������������
����������
�

�
������������������

Figure 10: Population size vs. completion rate. Re-
quest completion rate as a function of population size, given
a maximum transfer latency of 1.4 days, or an unbounded
transfer latency.

a relatively small number, and we therefore conclude
that PFE does not require a substantial user base to be
effective, and that it can be supported with a network
of brokers, each having relatively modest capacity.

5.6 Summary

From our trace-driven simulations, we conclude that
it is feasible to use PFE in an ap2p file sharing network
having a workload similar to today’s systems. Our sim-
ulations confirm that these systems would have a high
degree of liveness: most users would be able to ac-
quire most (if not all) of their desired files. We have
also shown that the system would satisfy requests fairly
quickly: nearly a third of requests would be satisfied
right away, and over 50% of requests would complete
within a day. Finally, our data suggests that as the
population grows, the quality of service that each user
receives improves gradually, although critical mass is
reached with a relatively modest number of users.

6 Conclusions

Today’s anonymous peer-to-peer (ap2p) file sharing
networks suffer damage caused to them by cheaters.

We identify two kinds of cheaters: freeloaders, who con-
sume resources without providing them, and spoofers,
who attempt to cause users to waste bandwidth by
downloading useless content. In this paper, we pre-
sented Pretty Fair Exchange (PFE), a protocol that
mitigates the effects of such cheaters in ap2p networks.

The essence of PFE is that it changes the basic op-
eration offered by an ap2p network from download to
download-while-uploading. By forcing peers to provide
content in order to obtain it, PFE prevents freeload-
ers from gaining any substantial advantage over other
users. We accomplish this through bandwidth barter-
ing: peers exchange content block-by-block, only up-
loading the next block once they have received their
currently owed block. PFE also gives users the ability
to verify content as they download it. Because of this,
spoofers cannot trick other users into virally propagat-
ing spoofed content.

Because we explicitly chose not to introduce trusted
or centralized components, PFE is only “pretty” fair.
PFE eliminates most, but not all, advantage gained
from freeloading: without a trusted third party to
escrow content, a participant can leave an exchange
without having transferred his last block of content.
Similarly, without persistent, authenticatable identi-
ties, spoofers cannot be permanently blocked from the
system. Nonetheless, PFE limits the advantage that
freeloaders can gain to a small fraction of a file, and
PFE forces spoofers to continually spend resources pro-
portional to the damage they want to cause.

Using trace-driven simulation, we demonstrated
that an ap2p network using PFE will be live. In
practice, it is possible to organize users into exchange
groups in which users mutually satisfy each other’s
wants. Despite needing to find compatible groups, we
show that users acquire the content they want with rea-
sonable delay, that groups can be formed even if the
total population is small, and that in practice, small
group sizes provide adequate system liveness.

References

[1] E. Adar and B. Huberman. Free riding on gnutella. In
First Monday, 5(10), October 2000.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.
Theimer, and R. P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI 2002), Boston, MA, December 2002.

[3] A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Pa-
padimitriou. Selfish behavior and stability of the Inter-
net: A game-theoretic analysis of TCP. In Proceedings
of the ACM SIGCOMM 2002 Conference, Pittsburgh,
PA, August 2002.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic
fair exchange of digital signatures. IEEE Journal on
Selected Areas in Communications.

[5] R. Axelrod. The Evolution of Cooperation. Basic
Books, New York, NY, 1984.

[6] F. Bao, R. Deng, , and W. Mao. Efficient and practical
fair exchange protocols with off-line TTP. In Proceed-
ings of 1998 IEEE Symposium on Security and Pri-
vacy, Oakland,CA, May 1998.

[7] G. Brassard, D. Chaum, and C. Crepeau. Minimum
disclosure proofs of knowledge. Journal of Computer
and System Sciences (JCSS).

[8] CCITT. Recommendation X.509: the directory – au-
thentication framework, 1988.

[9] D. Chaum, A. Fiat, and M. Naor. Untraceable elec-
tronic cash. In Proceedings of Advances in Cryptology
- CRYPTO 1988, Santa Barbara, CA.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information stor-
age and retrieval system. In Proceedings of the ICSI
Workshop on Design Issues in Anonymity and Unob-
servability, 2000.

[11] B. Cox, J. Tygar, and M. Sirbu. Netbill security
and transaction protocol. In Proceedings of the First
USENIX Workshop on Electronic Commerce, July
1995.

[12] L. B. Cox, C. D. Murray, and B. D. Noble. Pastiche:
making backup cheap and easy. In Proceedings of the
Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, December
2002.

[13] L. P. Cox and B. D. Noble. Fairness in peer-to-peer
storage systems. In Submitted to the Ninth Workshop
on Hot Topics in Operating Systems (HotOS IX), Li-
hue, Hawaii, May 1993.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise,
Banff, Canada, October 2001.

[15] R. Dingledine, M. J. Freedman, D. Hopwood, and D.
Molnar. A reputation system to increase MIX-net re-
liability. Lecture Notes in Computer Science.

[16] J. R. Douceur. The Sybil attack. In Proceedings of the
First International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, MA, March 2002.

[17] P. Druschel and A.Rowstron. Past: A large-scale, per-
sistent peer-to-peer storage utility. In Proceedings of
the Eighth IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII), May 2001.

[18] eBay Inc. http://www.ebay.com.

[19] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM (CACM).

[20] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and
P. Sobalvarro. The Millicent protocol for inexpensive
electronic commerce, December 1995.

[21] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, modeling,
and analysis of a Peer-to-Peer file-sharing workload. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing, NY,
October 2003.

[22] Kazaa Media Desktop. Usage statistics given at http:
//www.kazaa.com.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W.
Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In Proceed-
ings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS-IX), Cambridge, MA, Novem-
ber 2000.

[24] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows,
and M. Isard. A cooperative Internet backup scheme.
In Proceedings of the 2003 USENIX Annual Technical
Conference, San Antonio, Texas, June 2003.

[25] MojoNation. http://www.mojonation.net/

MojoNation.html.

[26] A. Orlowski. ”I poisoned P2P networks for the
RIAA”. News article from The Register, http://www.
theregister.co.uk.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middle-
ware), November 2001.

[28] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble,
and H. M. Levy. An analysis of Internet content deliv-
ery systems. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), Boston, MA, December 2002.

[29] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems. In
Proceedings USENIX Winter Conference 1988, Dallas,
Texas, USA.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable content-
addressable network. In Proceedings of the ACM SIG-
COMM 2001 Technical Conf., August 2001.

[31] M. Waldman, A. Rubin, and L. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web pub-
lishing system. In Proceedings of the 9th USENIX Se-
curity Symposium., Aug. 2000.

[32] J. Zhou and D. Gollman. A fair non-repudiation pro-
tocol. In Proceedings of the 1996 IEEE Symposium on
Research in Security and Privacy, Oakland, CA, 1996.

[33] P. Zimmermann. The Official PGP User’s Guide. MIT
Press, Cambridge, MA, 1995.

