
A Safety-Oriented Platform for Web Applications

Richard S. Cox†, Jacob Gorm Hansen‡, Steven D. Gribble†, and Henry M. Levy†

†Department of Computer Science & Engineering ‡Department of Computer Science
University of Washington University of Copenhagen

{rick, gribble, levy}@cs.washington.edu jacobg@diku.dk

Abstract

The Web browser has become the dominant interface to
a broad range of applications, including online banking,
Web-based email, digital media delivery, gaming, and e-
commerce services. Early Web browsers provided simple
access to static hypertext documents. In contrast, modern
browsers serve as de facto operating systems that must man-
age dynamic and potentially malicious applications. Unfor-
tunately, browsers have not properly adapted to their new
role. As a consequence, they fail to provide adequate isola-
tion across applications, exposing both users and Web ser-
vices to attack.

This paper describes the architecture and implementa-
tion of the Tahoma Web browsing system. Key to Tahoma is
the browser operating system (BOS), a new trusted software
layer on which Web browsers execute. The benefits of this
architecture are threefold. First, the BOS runs the client-
side component of each Web application (e.g., on-line bank-
ing, Web mail) in its own virtual machine. This provides
strong isolation between Web services and the user’s local
resources. Second, Tahoma lets Web publishers limit the
scope of their Web applications by specifying which URLs
and other resources their browsers are allowed to access.
This limits the harm that can be caused by a compromised
browser. Third, Tahoma treats Web applications as first-
class objects that users explicitly install and manage, giv-
ing them explicit knowledge about and control over down-
loaded content and code.

We have implemented a prototype of Tahoma using Linux
and the Xen virtual machine monitor. Our security eval-
uation shows that Tahoma can prevent or contain 87% of
the vulnerabilities that have been identified in the widely
used Mozilla browser. In addition, our measurements of
latency, throughput, and responsiveness demonstrate that
users need not sacrifice performance for the benefits of
stronger isolation and safety.

1 Introduction

The 1993 release of the Mosaic browser sparked the on-
set of the modern Web revolution [24]. The nascent Web
was a hypertext document system for which the browser
performed two functions: it fetched simple, static content
from Web servers, and it presented that content to the user.
A key Web feature was the ability for one Web site to link
to (or embed) content published by other sites. As a result,
users navigating the early Web perceived it as a vast repos-
itory of interconnected, passive documents.

Since that time, the Web has become increasingly com-
plex in both scale and function. It provides access to an
enormous number of services and resources, including fi-
nancial accounts, Web mail, archival file storage, multime-
dia, and e-commerce services of all types. Users transfer
funds, purchase tickets, file their taxes, apply for employ-
ment, and seek medical advice through the Web. Their per-
ceptions of the Web have evolved, as well. Today’s users
see the modern Web as a portal to a collection of indepen-
dent, dynamic applications interacting with remote servers.
Moreover, they expect that Web applications will behave
like the applications on their desktops. For example, users
trust that Web applications are sufficiently isolated from
one another that tampering or unintended access to sensi-
tive data will not occur.

To respond to the demands of dynamic services, the
browser has evolved from a simple document rendering en-
gine to an execution environment for complex, distributed
applications that execute partially on servers and partially
within clients’ browsers. Modern Web browsers download
and execute programs that mix passive content with active
scripts, code, or applets. These programs: effect transac-
tions with remote sites; interact with users through menus,
dialog boxes, and pop-up windows; and access and mod-
ify local resources, such as files, registry keys, and browser
components. The browser, then, has transcended its origi-
nal role to become a de facto operating system for executing
client-side components of Web applications.

Unfortunately, current browsers are not adequately de-

signed for their new role and environment. Despite many
attempts to retrofit isolation and security, the browser’s orig-
inal roots remain evident. Simply clicking on a hyperlink
can cause hostile software to be downloaded and executed
on the user’s machine. Such “drive-by downloads” are a
common cause of spyware infections [23]. Trusted plug-ins
may have security holes that permit content-based attacks.
Browser extensibility features, such as ActiveX components
and JavaScript, expose users to vulnerabilities that can po-
tentially result in the takeover of their machines.

Users assume that Web applications cannot interfere
with one another or with the browser itself. However, to-
day’s browsers fail to provide either kind of isolation. For
example, attackers can take advantage of cross-site script-
ing vulnerabilities to fool otherwise benign Web applica-
tions into delivering harmful scripted content to users, leak-
ing sensitive data from those services. Other browser flaws
let malicious Web sites hijack browser windows [26] or
spoof browser fields, such as the displayed URL [37]. Such
flaws facilitate “phishing” attacks, in which a hostile appli-
cation masquerades as another to capture information from
the user.

Overall, it is clear that current browsers cannot cope with
the demands and threats of today’s Web. While holes can
be patched on an ad hoc basis, a thorough re-examination
of the basic browser architecture is required. To this end,
we have designed and implemented a new browsing system
architecture, called Tahoma. The Tahoma architecture ad-
heres to three key principles:

1. Web applications should not be trusted. Active content
in today’s Internet is potentially dangerous. Both users
and Web services must protect themselves against a
myriad of online threats. Therefore, Web applications
should be contained within appropriate sandboxes to
mitigate potential damage.

2. Web browsers should not be trusted. Modern browsers
are complex and prone to bugs and security flaws
that can be easily exploited, making compromised
browsers a reality in the modern Internet. Therefore,
browsers should be isolated from the rest of the sys-
tem to mitigate potential damage.

3. Users should be able to identify and manage down-
loaded Web applications. Web applications should be
user visible and controllable, much like desktop appli-
cations. Users should be able to list all Web applica-
tions and associated servers that provide code or data,
and ascribe browsing-related windows to the Web ap-
plications that generated them.

By following these principles, Tahoma substantially im-
proves security and trustworthiness for both users and Web
services. Users gain knowledge and control of the active

Web content being downloaded and executed. Web services
gain the ability to restrict the set of sites with which their ap-
plications can communicate, thereby limiting damage from
hijacked browsers. Active Web content and the browser that
interprets and renders it are isolated in a private virtual ma-
chine, protecting the user’s desktop from side-effects, mali-
cious or otherwise.

The idea of sandboxing Web browsers is not new. For
example, VMware has recently release a virtual-machine-
based “Web browser appliance,” containing a checkpointed
image of the Firefox browser on Linux [32]. As another ex-
ample, GreenBorder [12] augments Windows with an OS-
level sandbox mechanism similar to BSD jails [17], in order
to contain malicious content arriving through Internet Ex-
plorer or Outlook. Our work uses VMs to provide strong
sandboxes for Web browser instances, but our contribu-
tion is much broader than the containment this provides.
Tahoma isolates Web applications from each other, in addi-
tion to isolating Web browsers from the host operating sys-
tem. As well, Tahoma permits Web services to customize
the browsers used to access them, and to control which re-
mote sites their browser instances can access.

We have implemented a prototype of the Tahoma brows-
ing system using Linux and the Xen virtual machine mon-
itor [4] and modified the Konqueror browser to execute on
top of it. Our experience shows that the Tahoma architecture
is straightforward to implement, protects against the major-
ity of existing threats, and is compatible with existing Web
services and browsers. We also demonstrate that the ben-
efits of our architecture can be achieved without compro-
mising user-visible performance, even for video-intensive
browsing applications.

The remainder of this paper is organized as follows. Sec-
tion 2 defines Tahoma’s high-level architecture and abstrac-
tions. Section 3 describes the implementation, while Sec-
tion 4 evaluates our prototype with respect to both function
and performance. Section 5 presents related work, and we
conclude our discussion in Section 6.

2 Architecture

The Tahoma architecture has six key features:

1. It defines a new trusted system layer, the browser op-
erating system (BOS), on top of which browser imple-
mentations (such as Netscape or IE) can run.

2. It provides explicit support for Web applications. A
Web application consists of a browser instance, which
includes a client-side browser executing dynamic Web
content and code, and a Web service, which is a col-
lection of Web sites with which the browser instance is
permitted to communicate.

site
site

site

site

site
site

Web service Web service

Browser OS

Internet

Web application 2Web application 1

browser instancebrowser instance

browser
Web

doc. browser
client

side

server

side

Web

doc.

Figure 1. The Tahoma architecture. A Web applica-
tion consists of two components: a client-side browser
instance and a remote Web service. The browser oper-
ating system isolates browser instances from each other
and also restricts the Web sites with which they can
communicate.

virtual machine

CPU

mem

disk screen

BOS resources:
bookmarks

downloads

 fork

reverse firewall

browser

(restricted)

Internet

network

policy

HTTP(S)

network

browser instance

Web

doc.

mouse

keybd.

Figure 2. The execution environment of a browser
instance. The browser instance executes in a virtual
machine sandbox that provides access to private re-
sources and a restricted subset of the Internet.

3. It enforces isolation between Web applications, pro-
hibiting one application from spying on or interfering
with other applications or host resources. Each Web
application has an associated browser instance that is
sandboxed within a virtual machine [4, 34].

4. It enforces policies defined by the Web service to con-
trol the execution of its browser instances, e.g., to re-
strict the set of Web sites with which a browser in-
stance can interact. A Web service provides the BOS
with a manifest – an object that defines its policies and
other Web application characteristics.

5. It supports an enhanced window interface for browser
instances. The BOS multiplexes windows from mul-
tiple instances onto the physical screen and authenti-
cates the Web application for users.

6. It provides resource support to browser instances, in-
cluding window management, network communica-
tion, bookmark management, and the execution or
“forking” of new Web applications.

Figure 1 shows a simplified, high-level view of the
Tahoma architecture. It identifies two Web applications,
each consisting of a client-side browser instance and a re-
mote Web service. Each browser instance comprises a
browser and the Web documents that it fetches, executes,
and displays. The browser operating system, shown be-
low the browser instances, isolates Web applications from
each other, preventing resource sharing or communication
between browser instances. The BOS also manages com-
munication between a browser instance and the Internet,
permitting access to those sites (and only those sites) in the
associated Web service.

We now describe the key components of this architecture
in more detail. Table 1 clarifies the terminology that we will
use throughout this paper.

2.1 Web Applications

Figure 2 shows the execution environment as viewed by
a client-side browser instance. Each browser instance exe-
cutes in a virtual machine (VM) that has its own private vir-
tual disk, CPU, memory, input devices, and screen. The VM
also supports a virtual network, through which the browser
instance interacts with remote Web sites. Unlike conven-
tional browsers, which can browse and display multiple
Web sites simultaneously, each Tahoma browser instance
is associated with a single, well-circumscribed Web appli-
cation, e.g., an application that provides online access to
the user’s bank. Thus, Tahoma users have a unique browser
instance associated with each running Web application.

The VM environment provided for the browser instance
has several advantages. First, a Web application is safe from
interference by other applications, and it is free to modify
any machine state, transient or persistent, without endan-
gering other applications or the user’s host OS. Second, the
user can easily remove all local effects of a Web application
by simply deleting its VM. Finally, the VM environment in-
creases flexibility for the programming of Web applications.
For example, a service could provide a customized browser
rather than using a commodity browser, or it could upload a
highly optimized application in x86 machine code.

Tahoma Web applications are first-class objects and are
explicitly defined and managed. The Web service specifies
the characteristics of its application in a manifest, which the
BOS retrieves when it first accesses the service. The man-

Tahoma term
analogous

OS term

Web documents: static and active content (e.g., HTML or JavaScript) that a browser fetches from a Web service
documents
and scripts

browser: client-side software (e.g., Firefox, IE) that interacts with a user to fetch, display, and execute Web documents program

virtual machine: a virtual x86 machine that provides the sandboxed execution environment for an instantiated browser process

browser instance: a browser executing in a virtual machine; a client has one browser instance per executing Web application
program
instance

Web application: the union of a client-side browser instance and a remote Web service that cooperate to provide the user with
some application function (e.g., online banking, Webmail)

distributed
application

Table 1. Terminology. This table explains key terms in the Tahoma architecture, and provides the closest analogous
term in a conventional operating system environment.

ifest includes several key pieces of information. First, it
presents a digital signature authenticating the Web service
to the client. Second, it specifies the code that will run in the
browser instance; it can name a conventional Web browser,
or it can specify arbitrary code and data to be downloaded,
as described above. Third, it specifies Internet access poli-
cies to be enforced by a reverse firewall. These network
policies define the set of Web sites or URLs that the browser
instance is allowed to access.

Network policies protect the Web application from com-
promised browsers. Browsers are easily compromised by
malicious plug-ins or through active Web content that ex-
ploits security holes in the browser or its extensions. A com-
promised browser could capture confidential data flowing
between the browser instance and its Web service and send
that information to an untrusted Internet site, or it could use
the browser instance as a base to attack other Internet hosts.
The network policy and reverse firewall aim to prevent these
attacks by restricting communication from the browser in-
stance to legitimate sites within the Web service.

Users accessing a Web application for the first time must
approve its installation. Only then will Tahoma create a new
virtual machine, install within it the browser code and data,
and execute the new browser instance. The BOS caches ap-
provals, so the user need not re-approve a Web application
on subsequent executions.

2.2 The Browser Operating System

The browser operating system is the trusted computing
base for the Tahoma browsing system. It instantiates and
manages the collection of browser instances executing on
the client. To do this, it must multiplex the virtual screens
of each browser instance onto the client’s physical display,
enforce the network policies of each instance, and durably
store state associated with browser instances, bookmarks,
and manifests.

Figure 3 shows a detailed architectural view of the
browser operating system. The figure contains three Web

applications and their isolated browser instances. Two of
the browser instances contain conventional browsers, while
the third is executing a custom radio application instead of
a conventional Web browser.

The BOS provides the highest level user interface, let-
ting users manipulate the virtual screens of each browser
instance. In addition, it wraps each virtual screen with a bor-
der that the browser instance cannot occlude. In the border,
the BOS provides trusted information to the user, such as
the name and credentials of the Web application with which
the screen is associated. The BOS routes input events to
the appropriate browser instance, similar to the way con-
ventional window systems operate.

The BOS also provides users with control panels and
bookmark management tools. These let the user install, ex-
ecute, and uninstall Web applications, or create bookmarks
that point to documents within a Web application. A book-
mark has a familiar meaning in the context of a conventional
Web browser. However, a Web application that provides its
own custom browser instance may co-opt bookmarks for its
own purposes. For example, a streaming radio service could
use bookmarks to implement radio channels.

The BOS mediates all network interactions between a
browser instance and remote Web sites. To access the Web,
a browser instance invokes a BOS system call that fetches
Web documents over HTTP. The BOS will service the con-
nection only if the document falls within the network policy
specified in the instance’s manifest. If not, the BOS refuses
the request. If the document is allowed by the manifest of a
different Web application, the BOS gives the user the option
of loading it into that Web application’s browser instance.

Web applications have durable state that the BOS must
manage. Sandboxes provide private virtual disks to browser
instances, and the BOS maintains the state of these disks
between invocations of the Web application. It also stores a
set of “stock” browser instances (e.g., Mozilla) that can be
cloned when installing a Web application. Finally, the BOS
stores manifests and bookmarks associated with Web appli-
cations. It treats all long-term storage as a soft-state cache.

Browser

Operating

System

syscalls

physical

display

sandbox

Internet

network

policy

network

policy

screen screen screen

screen

aggregator

Bank Web Mail Radio

network

policy

radio client

software
KonquerorMozilla

storage

manifests

bookmarks

sandbox state

system

services

Figure 3. The browser operating system (BOS).
The BOS instantiates and manages sandboxes,
stores long-term state associated with browser in-
stances, enforces the network access rights of
browser instances, and aggregates their virtual
screens into the client’s physical display.

Internet
disk screen

Xen VMM

HTTP/TCP

browser instance

(domain 1 VM)

Linux

Konqueror

Linux NetBSD

domain 0 VM

Linux

BOS

WinMgr
BOS

“kernel”tiny

proxy
tiny

proxy
tiny

proxy

Konqueror
Media

browser

XML RPC

lib
Q

T

lib
B

O
S

browser instance

(domain 2 VM)

browser instance

(domain 3 VM)

keyboardmousememory

lib
Q

T

lib
B

O
S

lib
Q

T

lib
B

O
S

Figure 4. The Tahoma implementation. The
Xen virtual machine monitor isolates browser in-
stances by sandboxing them in virtual machines.
Processes running within the privileged “domain 0”
VM provide BOS services. Additional services are
provided by libraries embedded in browsers.

Accordingly, durable state can be evicted, but at the cost
of having to re-download manifests or re-install browser in-
stances when the user next accesses a Web application.

We describe our implementation choices in Section 3.
However, the BOS is designed to be implementable in dif-
ferent ways. For example, it could run in its own virtual
machine, with browser instances running in separate virtual
machines with their own guest operating systems. Alterna-
tively, it could be implemented as a virtual machine monitor
running directly on the physical hardware, with browser in-
stances running in VMs above it.

2.3 Summary

The Tahoma architecture is driven by the principles de-
scribed in Section 1: distrust of Web browsers and appli-
cations, and the empowerment of users. The resulting ar-
chitecture isolates Web applications, protecting other ap-
plications and client resources from malicious downloaded
code. In addition, it permits Web services to build safer,
more powerful Web applications. Overall, our goal is to ac-
cept the enhanced role of modern browsers in managing the
client-side components of complex, non-trusted, distributed
applications.

3 Implementation

This section describes the central components of our
Tahoma prototype implementation. These components in-
clude: the browser operating system, which consists of a

BOS kernel, a network proxy, and a window manager; the
browser instances; and the underlying Xen virtual machine
monitor.

3.1 Xen and the Browser Operating Sys-
tem

The Tahoma browser operating system is a trusted layer
that executes multiple browser instances, each within a
private, sandboxed execution environment. As shown in
Figure 4, our Tahoma implementation uses the Xen vir-
tual machine monitor (VMM) [4]. Xen is an open-source
VMM that provides para-virtualized x86 virtual machines.
It executes in the most privileged mode on bare hardware,
as shown in the figure. Above the VMM are individ-
ual virtual machines, which Xen names Domain0 through
DomainN . Each domain executes a guest operating sys-
tem, such as Linux, which runs at a lower privilege level
than the VMM. User-mode applications run on the guest
OS at the lowest privilege level.

Xen’s Domain0 is special; it performs many of the
management functions for Xen, but outside of the VMM.
Domain0 has access to all physical memory. It can cre-
ate and destroy other domains, make policy decisions for
scheduling and memory allocation, and provide access to
network devices. In this way, many VMM supervisor func-
tions can be programmed as user-mode code on top of the
Domain0 guest operating system.

We implemented the Tahoma browser operating system
as a collection of processes that execute on Linux in the

privileged Xen Domain0 VM, as shown in the upper left
of Figure 4. The three main BOS processes are: the BOS
kernel, which manages browser instances and the durable
storage of the system; the network proxy, a reverse fire-
wall that enforces network access policies for Web applica-
tions; and the window manager, which aggregates browser
instance windows into the physical screen.

Each Tahoma browser instance executes in its own Xen
virtual machine. In Figure 4, the first two browser instances
are running versions of the Konqueror Web browser, which
we ported to Tahoma, on top of a Linux guest OS. The third
browser instance is executing a custom multimedia browser
on a NetBSD guest OS. The browser instances interface to
the BOS through libraries linked into the browser that pro-
vide access to BOS system functions (libBOS) and graph-
ics functions (libQT). We describe libBOS below, libQT
in Section 3.4, and the browsers we implemented in Sec-
tion 3.5.

Browser instances must be able to communicate with the
Domain0 BOS processes, and vice versa. We use the term
browser-calls to refer to instance-to-BOS communications.
In the other direction, BOS-to-instance notifications are de-
livered as upcalls to the instances. Browser-calls are im-
plemented as XML-formatted remote procedure calls, car-
ried over a TCP connection. A point-to-point virtual net-
work link carries the RPCs between each instance and a
Domain0 BOS process. Because Xen restricts access to
point-to-point links to the two VMs involved, the BOS can
safely assume messages arriving on these links are authen-
tic; this resembles the way a traditional kernel uses the cur-
rent process ID to determine the origin of a system call. The
library libBOS contains RPC stubs that expose browser-
calls to applications as high-level function calls.

Most communication in Tahoma occurs within a Web ap-
plication, between a browser instance and its Web service.
However, the BOS provides three inter-application commu-
nication paths – fork, BinStore, and BinFetch – that are
implemented through browser-calls. Applications may fork
other applications. The fork browser-call includes the target
URL to be forked as an argument. Based on this URL, the
BOS kernel examines (or downloads) the appropriate man-
ifest and determines which browser instance should handle
the request. It then launches the browser instance, if needed,
and delivers the URL to the instance through an upcall.

The BOS supports strong VM-based isolation between
browser instances. However, it must also permit the con-
trolled transfer of objects outside of a VM. For example, a
user must be able to copy a photo from a Web-mail appli-
cation into a photo album, or vice versa. For this purpose,
the BOS kernel implements a private “holding bin” for each
browser instance. To manipulate the holding bin, the ker-
nel provides two browser-calls – BinStore and BinFetch.
A browser instance copies an object to its holding bin by

invoking the BinStore browser-call, specifying the object’s
URL, an object name, and a MIME type. Similarly, the
BinFetch browser-call lets the browser instance find and re-
trieve an object from the holding bin. However, a transfer
between the holding bin and the host OS must be initiated
explicitly by a user through a trusted Tahoma tool; it can-
not be initiated by the browser instance. In this way, we
permit controlled transfers but prohibit code in the browser
instance from directly manipulating host OS resources.

3.2 Xen and the Browser Instance

Browser instances execute in Xen VMs, with Xen han-
dling the low-level details of CPU and memory isola-
tion. The BOS augments Xen by enforcing the manifest-
specified network policy of each browser instance. Browser
instances are therefore not provided with an unfettered In-
ternet link. Instead, a Xen (virtual) point-to-point network
link is established between the browser instance and the
Domain0 VM. In Domain0, we run an HTTP proxy pro-
cess, derived from tinyproxy [16]. The proxy checks each
requested URL against the browser instance’s network pol-
icy, returning an error if the URL is outside of the manifest-
defined Web service.

For unencrypted connections, the proxy can filter based
on the full URL. SSL connections, however, encrypt the
URL. For these connections, the proxy can filter based only
on host and port number. Similarly, other protocols, such as
streaming video, can be restricted based only on network-
and transport-level connection attributes, since our proxy
does not understand their protocols. This limits the trust-
worthiness of our current proxy to that of the DNS system
on which it relies, even for SSL-protected connections.

Each Xen VM executing a browser instance includes
several virtual disks, which are initialized and controlled by
the BOS kernel. A read-only root disk contains the base file
system for the browser instance, including the image of its
guest OS. A writable data disk provides storage for any data
the browser instance needs to durably store on the local sys-
tem. When an application is launched for the first time, its
data disk is initialized to a blank file system.

Separating the writable data disk from the read-only
root disk permits simple upgrade semantics if the root disk
changes: the BOS replaces the root disk, but preserves the
data disk. Any data that the browser instance stores in the
data disk therefore survives upgrades. More importantly,
by making the root disk read-only, we can safely share root
disks across browser instances.

Persistent changes made by the application are applied to
the virtual data disk on the guest OS, not to the file-system
of the host OS on which the user is running. In this way, the
user’s OS is isolated from potentially dangerous changes,
such as those made by spyware or other pathogens. Equally

<?xml version="1.0"?>
<Manifest Name="http://www.aa.com/#gen"> <Application Name="http://www.aa.com/" GUID=”230884839021434298”>
<NetworkPolicy>
 <Service> <Host>aa.com</Host> </Service> <Service> <Host>www.aa.com</Host> </Service>
 <Service> <Host>www.touraa.com</Host> </Service> <Service> <Host>network.realmedia.com</Host> </Service>
 <Service> <Host>www.macromedia.com</Host> </Service> <Service> <Host>www.latinmedios.com</Host> </Service>
 <Service> <Host>ad.doubleclick.net</Host> </Service> <Service> <Host>switch.atdmt.com</Host> </Service>

 ...additional advertising partner sites...

</NetworkPolicy>

<BrowserPolicy>
 <Browser>
 <OS>Windows</OS> <arch>ia32</arch> <app>FireFox</app> <url>http://www.mozilla.org/firefox_ia32.vm</url>
 </Browser>

 ...additional browser instances...

</BrowserPolicy>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 ...DSA signature block...

</Signature></Manifest>

Figure 5. A sample manifest. This manifest for the American Airlines Web service permits access to the main Web
site and the sites of advertising partners. It indicates that the browser instance should run a stock Firefox browser.

important, the user can remove all durable changes made by
an application simply by deleting its browser instance.

3.3 Manifests

A Web service defines a Web application by creating a
manifest and making it accessible to the BOS kernel. The
manifest describes policies and attributes that control the
execution and behavior of all browser instances associated
with the Web application. A manifest is an XML docu-
ment that includes: (1) a network policy, which specifies
the remote network services with which a browser instance
can interact; (2) a browser policy, which specifies the code
that should be initially installed within a browser instance’s
sandbox; (3) a digital signature for the Web service; (4)
a human-readable Web application name; (5) a machine-
readable manifest name; and (6) a globally unique identifier
for the application. Figure 5 shows a sample manifest.

3.3.1 Manifest location and authentication

Conceptually, every Web object has an associated mani-
fest. Web servers can supply an “X-Tahoma-manifest”
HTTP header extension when delivering a Web object. This
header specifies the unique name for the object’s manifest
and a URL from which the manifest can be retrieved by the
browser operating system.

There are two ways for the user to launch a Web appli-
cation for the first time. First, the user can invoke one of
Tahoma’s management tools and pass the URL to it. Sec-
ond, the user can type the URL into a browser instance of
a different Web application. In either case, the result is the
same. The BOS performs an HTTP HEAD operation on
the supplied URL to find and retrieve the Web application’s

manifest. It will then fork a new browser instance that
executes inside a new Xen virtual machine.

In addition to the HTTP header extension, we also sup-
port per-server manifest files. If a manifest is not provided
in an object’s HTTP header, the BOS attempts to download
“/manifest.xml” from the Web server providing that
object. As a final fall-back, the BOS also consults a local
database of manually supplied manifest files. If none of
these mechanisms succeeds, the BOS automatically gener-
ates a new generic manifest that implements the basic Web
security model that conventional browsers enforce. The
generic manifest permits access to any URLs reached on
a path from the top-level URL. However, the BOS forks a
new browser instance to execute any document not in the
top-level URL’s domain.

Tahoma uses public-key certificates to authenticate Web
applications to clients. Each Web application has an asso-
ciated master public/private key pair. Using the private key,
Web services sign manifests to prove their authenticity to
clients. These signatures are included in the manifests us-
ing the XML-SIG standard [5]. Note that this certification
scheme does not completely solve all trust issues. Neither
the BOS nor a user has any reason to initially believe that
a particular key pair speaks for the real-world entity that
should be associated with the Web application. For this we
rely on traditional PKI certification authorities.

Manifest signatures allow an application’s manifest to
evolve over time. A signature securely verifies that two
manifests came from the same source. A Web service can
replace an existing application manifest by sending a new
manifest with the same name. Alternatively, the Web ser-
vice can add a manifest for a Web application by sending
a new manifest that has a different manifest name but the
same application name.

3.3.2 Manifest policies

As previously mentioned, the manifest network policy de-
scribes the access rights of a browser instance by listing the
Web sites with which it may communicate. An entry in the
list contains a host name (or a regular expression against
which candidate host names are matched) and an optional
set of qualifiers, including a port, protocol, or URL on that
host. The Web service specified by a manifest is defined
as the union of all items in its network policy. To allow an
application’s Web service to be incrementally defined, a sin-
gle Web application may consist of multiple manifests. Be-
cause network policies are simply lists, we can easily con-
catenate network policies within manifests without creating
unexpected policy effects.

Web services can express any policy they choose. Noth-
ing prevents one Web application from including a Web ob-
ject in its manifest that also falls in a second application.
In other words, Web applications can overlap. This reflects
the nature of the Web: there are no technical restrictions
on linking or embedding content without the approval of
its publisher. However, a Web application can prevent its
browser instances from fetching content from or sending
information to other Web applications.

In addition to the network policy, each manifest speci-
fies the code that should be run in the browser instance. If
the Web service wishes to run a stock Web browser, it pro-
vides a list of permissible browsers and guest OSs. As a
performance optimization, the BOS kernel stores a set of
VM checkpoints of freshly booted stock browsers. If one
of the browser checkpoints matches a permissible browser
specified in the manifest, the BOS clones the checkpoint
into a new VM sandbox. If not, the BOS relies on the Web
service to supply a URL of a VM image to download and
execute.

Alternatively, the Web service can mandate that a custom
browser instance should run in the sandbox. In this case,
the Web service must supply a URL and hash of the custom
VM image to be downloaded. The VM image must contain
a bootable x86 guest operating system and applications.

We will not discuss network policy creation in detail in
this paper. However, we have built a Web crawler to aid
in manifest construction and have written manifests for the
top ten most popular Web sites (according to Alexa.com).
In general, we found it fairly simple to construct manifests
with the help of this tool.

3.4 The Window Manager

Tahoma’s user interface is implemented by a window
manager process running in Domain0. We designed the
windowing mechanisms with both performance and safety
in mind. For performance, the window manager offloads
work, using functions available in the graphics processing

unit (GPU) of modern video cards.For safety, our imple-
mentation ensures that browser instances cannot perform
denial-of-service attacks by consuming excessive BOS re-
sources: all graphics state is maintained by and charged to
the browser instances themselves.

The Tahoma window manager provides a virtual screen
abstraction to each browser instance. Within this virtual
screen, the browser instance can create and position one
or more rectangular sprites, as shown in Figure 6a. Each
sprite consists of a grid of tiles. A tile, which is backed by a
single 4KB machine page in the browser instance’s virtual
machine, contains 32 x 32 pixels, with 32 bits of color and
alpha information per pixel.

Providing browser instances with the abstraction of mul-
tiple sprites is useful for several reasons. A Web browser
typically exposes multiple windows to the user; each win-
dow can be represented by a sprite. In addition, layered
user-interface elements, such as floating toolbars and pull-
down menus, can be incorporated as additional sprites over-
laid on the main window sprite. By using page-aligned tiles,
the window manager can exploit the dirty-page tracking of
the CPU memory management unit (MMU) to determine
which tiles have been modified and need to be copied to the
graphics card.

The Tahoma window manager superimposes the sprites
of each browser instance onto the physical computer screen,
as shown in Figure 6. Many different policies are possi-
ble. For example, the window manager could co-mingle the
sprites of all browser instances in the main screen area, as
shown in Figure 6b. Alternatively, it could preserve the no-
tion of virtual screens, as shown in Figure 6c.

To simplify porting browsers to Tahoma, we modified
the Qt multi-platform GUI library to interact with the win-
dow manager through its tiles and sprites abstractions. We
preserved Qt’s API; Qt-compatible applications can be re-
linked against our modified libQT to make them work with
Tahoma’s graphics subsystem.

3.5 Browsers

The execution environment of a browser instance is
based on a Xen virtual machine. Therefore, most appli-
cations will run on Tahoma with little or no modification.
However, three kinds of modifications may be necessary:
(1) linking to libQT to access the Tahoma graphics sub-
system; (2) using a browser-call to access remote services,
rather than accessing the network directly through a virtual
device; and (3) using browser-calls for new functions, such
as forking a new browser instance or interacting with the
holding bin.

To date, we have implemented two Tahoma browsers:
a port of the Konqueror Web browser [18] and a port of
the MPlayer media player [20]. Konqueror is a fully fea-

virtual screen (app 2)virtual screen (app 1)

sprite
sprite

sprite

sprite

sprite sprite

 (a) (b) (c)

Figure 6. Tahoma window manager. (a) The Tahoma window manager aggregates the virtual screens of each
browser instance on the physical screen. (b) In one policy, the individual sprites from each instance are all collapsed
into a single drawing area. (c) In another policy, the window manager preserves the isolation of sprites for each instance
in their own virtual screens.

tured Web browser that supports Java applets, JavaScript,
SSL, DOM, and cascading style sheets. The MPlayer me-
dia player supports most popular video and audio codecs,
either natively or by wrapping third party binary codec li-
braries. The MPlayer implementation is performance fo-
cused, optimizing the speed of video decoding via special-
ized hardware features, such as CPU SIMD extensions or
GPU colorspace conversion and image scaling.

Our MPlayer port demonstrates the flexibility of the
Tahoma architecture. By selecting MPlayer to run in their
browser instances, Web services can provide users with
streaming media applications, such as Internet radio or
television, instead of a more conventional HTML brows-
ing service. From the perspective of a user, an MPlayer
browser instance will have a radically different look and
feel than a conventional Web browser. From the perspec-
tive of Tahoma, MPlayer is simply a browser instance and
is treated like any other browser instance.

3.6 Summary

We implemented the Tahoma browser operating system
as a layer on top of the Xen virtual machine monitor. Our
implementation benefits from the ability to create and con-
trol Xen virtual machines through the Xen Domain0 VM.
This lets us program the major components of Tahoma – the
BOS kernel, the network proxy, and the window manager
– as user-mode Domain0 processes. Browser instances,
which are encapsulated in Xen virtual machines, communi-
cate with the BOS kernel through high-level browser-calls
carried by virtual network links. In the following section,
we evaluate the safety benefits and the performance over-
head of our Tahoma architecture and its implementation.

4 Evaluation

Our Tahoma prototype consists of approximately 10K
lines of Perl and C code. This section evaluates two as-
pects of the prototype: (1) its safety and effectiveness in

containing threats, and (2) its performance. We have not
yet optimized our implementation. Therefore, our perfor-
mance results should be considered as an upper bound on
the overhead intrinsic to our approach.

4.1 Safety and Effectiveness

A critical measure of Tahoma’s value is whether it suc-
cessfully prevents or contains threats that occur in practice.
Isolation should provide significant safety benefits. How-
ever, Tahoma will not prevent all threats.

As an example, security vulnerabilities can arise due to
Tahoma’s dependence on external systems, such as DNS.
Attackers that subvert DNS can subvert Tahoma’s network
filtering policies by changing legitimate bindings to point
to IP addresses outside of the intended domain. Tahoma
cannot defend itself from these attacks. Another example
is a malicious browser instance, which could use a sharing
interface provided by Tahoma to attack another browser in-
stance or Web application. While Tahoma greatly reduces
the number of sharing channels, these channels still exist.
Consider a browser that contains a buffer-overflow vulner-
ability in its URL parsing code. A malicious browser in-
stance could use the fork browser-call to pass an attack
string to a second browser instance, potentially subverting
it. Any channel that permits sharing between mutually dis-
trusting Web applications is susceptible to attack.

To quantitatively evaluate the effectiveness of Tahoma,
we obtained a list of 109 security vulnerabilities discovered
in current or previous versions of the widely used Mozilla
open source browser. We analyzed the vulnerabilities and
classified them into five different categories. The five vul-
nerability categories, along with the Tahoma features in-
tended to defend against them, are:

• Sandbox weakness: Browsers use language and run-
time mechanisms to sandbox scripts, applets, and
other active Web content, but these language- and
type-specific sandboxes are often flawed. In con-

class of vulnerability examples % contained

weak sandbox Active content can replace a portion of the JavaScript runtime with its own scripts and gain access to trusted areas of Mozilla. 100% (55 of 55)

vulnerable sharing interface By crafting an HTML upload form, attackers can select the name of a file to transfer, accessing any file on the user’s machine. 86% (25 of 29)

improper labeling By subverting DNS, an attacker can trick a browser into sending cached credentials to an IP address of the attacker’s choosing. 33% (4 of 12)

interface spoofing Web content can override Mozilla’s user interface, allowing attackers to spoof interface elements or remote sites. 100% (11 of 11)

other Though instructed by the user not to do so, Mozilla stores a password on disk. 0% (0 of 2)

total: 87% (95 of 109)

Table 2. Vulnerabilities. We show the percentage of Mozilla vulnerabilities that Tahoma contains or eliminates.

trast, Tahoma uses virtual machines as a language-
independent sandbox for the entire browser instance.

• Vulnerable sharing interface: Browsers contain
many programmatic interfaces (e.g., DOM access) and
user interfaces (e.g., file upload dialog boxes) for shar-
ing data across security domains. These interfaces can
often be subverted. In Tahoma, we limit sharing across
Web applications to a small set of browser-calls and
holding bin manipulation interfaces.

• Improper labeling: Browsers assign Web objects to
security domains using a complicated set of heuristics.
Incorrectly labeling an object as belonging to a do-
main can enable attacks such as drive-by downloads.
In Tahoma, Web services explicitly declare the scope
of their Web application through manifests.

• Interface spoofing: Browsers are susceptible to
spoofing attacks, in which a malicious site attempts to
occlude or replicate browser UI elements or the “look
and feel” of victim sites. In Tahoma, the Tahoma win-
dow manager decorates browser instances with labeled
borders that cannot be accessed or occluded.

• Other: Some vulnerabilities could not easily be clas-
sified; this category is a “catch-all” for these.

We examined each of the 109 Mozilla vulnerabilities to
determine whether Tahoma successfully contains or elim-
inates the threat within the affected browser instance, or
whether the attacker can use the vulnerability to harm ex-
ternal resources or Web applications.

Table 2 shows the results of our analysis, broken down
by our vulnerability categories. As examples, we list one
specific attack that was seen for each category. The table
shows that Tahoma successfully contains or eliminates 95
of the 109 listed Mozilla vulnerabilities (87%). Many of
these vulnerabilities are browser implementation flaws that
allow a remote attacker to inject code, extract files from
the user’s machine, or otherwise subvert the browser’s se-
curity mechanisms. Although Tahoma does not directly fix
these vulnerabilities, its isolated virtual machines contain
the damage to a single browser instance and its application,

preserving the integrity of the user’s resources, the host op-
erating system, and other browser instances.

A good example of a contained vulnerability is an attack
on Mozilla’s SSL certificate management functions. An at-
tacker could deliver a malicious email certificate to Mozilla
that masks a built-in certificate-authority certificate, per-
manently blocking SSL connections to valid sites. Under
Tahoma, this attack would succeed on a susceptible browser
instance, but it would be contained to that instance.

4.2 Performance

Our analysis of Mozilla vulnerabilities demonstrates that
Tahoma can increase safety and security for Web browsing.
However, there is typically a tradeoff between safety and
performance. Given Tahoma’s use of VMs for isolation,
what is the cost of virtualization to the user and to the Web
application?

To answer this question, we ran several benchmarks to
quantify the performance of common Web-browsing opera-
tions and the overhead of Tahoma’s browser virtualization.
Our measurements were made on an Intel Pentium 4 proces-
sor with a 3.0GHz clock, 800MHz front-side bus, 1 GB of
RAM, and an ATI Radeon 9600SE graphics card. Network-
ing tests used an on-board Intel Pro/1000 NIC connected to
an Asante FriendlyNet GX5-2400 Gigabit Ethernet switch.
We booted Linux version 2.6.10 either directly on the CPU
or in Xen virtual machines, as indicated for each experi-
ment. For the Xen-hosted tests, the kernels included the
necessary Xen modifications, built from the Xen 2.0 unsta-
ble branch with patches through March 7, 2005.

4.2.1 The cost of virtual machine creation

Although the optimization of virtual machine performance
is well studied [4], virtualization still has a cost. In par-
ticular, the Tahoma implementation frequently creates (or
forks) a virtual machine to execute a new browser instance.
Forks occur whenever the user enters the URL of a new Web
application. Therefore, we wished to measure the impact of
VM fork overhead on Tahoma users.

operation average latency

specialize a pre-forked
browser instance

1.06 seconds
Tahoma

fork() clone a new VM, boot guest OS,
launch browser program

9.26 seconds

load URL in running Konqueror 0.84 seconds

warm-start Konqueror 1.32 seconds

native

Konqueror

open URL
cold-start Konqueror 5.74 seconds

Figure 7. Browser fork latency. This table com-
pares the time to fork a new browser instance for
the Konqueror browser running on the Tahoma pro-
totype, and for Konqueror running on native Linux.

1

10

100

1000

1 2 3 4 5 6 7 8

concurrent browser instances

la
te

n
c
y
 (

m
s
)

1KB object

10KB object

128KB object

1MB object

Figure 8. Web object download latency (LAN).
this graph shows the latency of downloading Web
objects of different size, with varying numbers of
concurrent browser instances actively fetching the
object, over a LAN.

Figure 7 shows the cost of forking a new Tahoma
browser instance in a virtual machine compared to the cost
of starting a new browser in native Linux. The top half
of the table shows two different Tahoma cases. The first
line shows the time to “specialize” a pre-forked browser in-
stance. Because we expect forking of commodity browsers
to be the common case, Tahoma maintains a pool of pre-
forked guest operating systems with stock browsers (we use
Konqueror on Linux for this test). When the BOS receives a
fork browser-call, it checks whether a pre-forked version of
the specified browser and guest OS is available. If so, then
the BOS need only set up the appropriate network policy in
a tinyproxy process and “specialize” the browser instance
by mounting its data disk. The time to instantiate and spe-
cialize a pre-forked browser instance is 1.06 seconds.

If a compatible pre-forked instance cannot be found in
the pool, then to service the fork, Tahoma must clone a new
VM, boot its guest OS, and launch the browser. The cost
for this full operation is 9.26 seconds.

For comparison, the bottom half of Figure 7 shows the la-
tency of opening a Konqueror window on native Linux. We
measured three cases: (1) the latency of opening a new win-
dow in a running Konqueror process, (2) the “warm-start”
latency of launching Konqueror, assuming it has been previ-
ously launched, and (3) the “cold-start” latency of launching
Konqueror on a cold file system buffer cache. Interestingly,
the best case latency with Konqueror on native Linux, 0.84
seconds for an already executing browser, is only slightly
(and imperceptibly) better than the time to launch a pre-
forked Tahoma VM, while a warm-start of Konqueror is
slightly worse than the pre-fork operation. The latency for
a Konqueror cold start on native Linux is 5.7 seconds, 60%
of the latency of a full VM clone and OS boot on Tahoma.
Both the cold-start and full-clone latencies are relatively
long; both could be reduced through optimization.

4.2.2 Network performance

From the user’s perspective, there are two key network-
related performance metrics: the latency of fetching a Web
page, and the achieved throughput when fetching a large ob-
ject. On Tahoma, all browser network communications flow
through the Xen Domain0 VM, where they are filtered by
tinyproxy according to the network policy. We measured
the latency and bandwidth overhead of this additional indi-
rection and filtering.

To measure the Web-object fetch latency, we started sev-
eral concurrent browser instances, each scripted to fetch a
Web object repeatedly. We measured the average latency to
fully retrieve the object from a dedicated server on the local
network as a function of the number of concurrent browser
instances for different object sizes. Figure 8 shows the re-
sults. For a single browser instance fetching a 10KB Web
object, the measured fetch latency was 3.6 ms. With eight
concurrent browser instances, the latency for the 10KB ob-
ject grew to 20.1 ms. These results are encouraging, as
this latency is well below the 625 ms response-time thresh-
old for users to operate in an optimal “automatic response”
mode [30]. For large Web pages (1MB), the single-instance
latency was 57 ms; at eight concurrent instances, the latency
grew to 444 ms.

As the Web page size grows, the user’s perceived re-
sponse time is dictated by the system’s bottleneck band-
width. We repeated our latency measurements on a wide-
area network. In all cases, network round-trip time and
bandwidth dominated the download latency: Tahoma was
not a bottleneck and had no impact on perceived latency in
a WAN setting.

We compared the throughput of a long-lived TCP con-
nection under Tahoma and native Linux. For this experi-
ment, we initiated a TCP connection from the client to a
server running on the local LAN and measured the sus-
tained throughput from the server. Table 3 shows our re-
sults. Surprisingly, Tahoma’s raw throughput exceeds that

scenario TCP throughput

direct from domain 0 911 Mb/s

domain 1, routed through domain 0 638 Mb/s Tahoma

domain 1, proxied through domain 0 637 Mb/s

direct 840 Mb/s
native Linux

through a local proxy 556 Mb/s

Table 3. Long-lived TCP throughput. This table
compares the TCP bandwidth achieved in Tahoma
and on native Linux.

display system unit of execution # sustained MPlayers

Tahoma graphics VM 12

(networked) X11 VM 1

(shared-memory) X11 process 20

Table 4. Graphics throughput. This table com-
pares the maximum number of sustainable MPlayer
instances under different scenarios.

of native Linux: Domain0 achieves 911 Mb/s bandwidth
from the server, compared to 840 Mb/s on native Linux.
High-bandwidth TCP connections are notoriously sensitive
to small parameter changes (such as send and receive buffer
sizes) or timing discrepancies. Accordingly, it is difficult
to fully account for the performance differences, though we
attribute some of them to Xen performance optimizations,
such as interrupt batching.

From Table 3, we can isolate the costs of indirection
and proxying in Tahoma. Routing communications through
Domain0 from another VM reduces throughput by 30%,
to 638 Mb/s. The additional cost of the tinyproxy filter-
ing is almost negligible at that point. From these numbers,
we conclude that Tahoma’s throughput, even when filtered
through a proxy in the Domain0 VM, is high enough to
support the vast majority of Web browsing workloads.

4.2.3 User interface performance

To measure the performance of the Tahoma window man-
ager, we ran a variable number of virtual machines, each
containing an MPlayer browser instance, which we con-
sider a “worst case” test. Each MPlayer application ren-
dered a 512x304 pixel DIVX/AVI video at 25 frames per
second. We increased the number of browser instances until
MPlayer reported that it could no longer sustain this frame
rate. We ran this benchmark under two Tahoma configura-
tions: (1) each MPlayer running as a browser instance un-
der Tahoma using Tahoma’s window manager, and (2) each
MPlayer running as a browser instance under Tahoma, but
using X11 to render to a Domain0 Xserver. We also ran
an experiment on native Linux, where each MPlayer ran as
a Linux process using shared-memory X11 to render to the
local Xserver.

Table 4 shows our results. Tahoma’s window manager
can sustain 12 MPlayer instances simultaneously, achieving
an order of magnitude better performance than X11 across
VMs. Native Linux with shared-memory X11 improves
on Tahoma by 70% (20 sustained instances), but it lacks
Tahoma’s isolation benefits. Tahoma’s ability to support 12
simultaneous video players indicates that multiplexing win-
dows from multiple VMs should not pose a visible perfor-
mance problem for Tahoma users.

To measure Tahoma’s input performance, we recorded
the delay between the time a user presses a key and the
time the corresponding character is rendered by a Kon-
queror browser instance. To do this, we instrumented Xen
to timestamp physical keyboard interrupts and instrumented
Konqueror to timestamp character rendering events. In the
simple case of a single Konqueror browser instance, the in-
put echo time was under 1 ms. In an attempt to increase
window management interference, we measured the same
input event with 10 MPlayer browser instances running 10
video streams concurrently. When competing with the ten
MPlayer instances, the Konqueror echo time remained be-
low 12 ms, still imperceptibly small to the user.

4.3 Summary

This section examined the safety, effectiveness, and per-
formance of the Tahoma implementation. We used a list
of 109 security vulnerabilities in the Mozilla browser to
evaluate Tahoma’s effectiveness at containing threats. Our
analysis shows that Tahoma can contain or eliminate 87%
of the vulnerabilities discovered in Mozilla. Next, we ran
benchmarks to quantify the performance cost of Tahoma’s
VM-based isolation mechanism. Our benchmarks demon-
strate that despite virtualization, indirection, and proxying,
Tahoma can achieve the latency, throughput, and respon-
siveness characteristics demanded by the vast majority of
browsing applications.

5 Related Work

Tahoma is a composite of architectural elements that iso-
late Web applications and provide users with a safer expe-
rience. Several of Tahoma’s architectural components have
been explored in various forms in the past, as has the gen-
eral topic of improving Web security. We discuss this re-
lated work below.

5.1 Web Security Vulnerabilities

Vulnerabilities can exist in both client-side browsers and
in the Web services with which they communicate. In

browsers, scripting languages, such as JavaScript and VB-
Script, are a major source of security flaws. While individ-
ual flaws can be addressed, the underlying security frame-
work of browser scripting is itself considered unsafe [2],
suggesting that flaws arising from active content will be an
ongoing problem.

Java applet security is a well-studied topic [8]. Java’s
current stack-based security model [33] is significantly
stronger its original model. However, Java applets have re-
cently taken a secondary role to on the Web other forms
of active content, such as Flash elements, ActiveX com-
ponents, and JavaScript. Tahoma uses VMs to provide
a language-independent safe execution environment for
browser instances. Even if a browser has security vulner-
abilities, Tahoma contains those flaws within the VM sand-
box.

Web services are prone to attack from buffer over-
runs, SQL injection attacks, and faulty access control poli-
cies. Improving Web service security is an active research
topic [25, 13] beyond the scope of this paper.

5.2 Sandboxes

Multiple approaches for containing code within sand-
boxes [21] have been explored, including OS system call
interposition [6, 11], fine-grained capability-based sys-
tems [27], intra-process domains [7], and virtual machine
monitors [4, 34] or hypervisors [19]. In addition to ex-
ploring mechanisms, researchers have explored appropri-
ate policies and usage models. MAPbox [1] defines a set
of canonical application class labels (such as compiler, net-
work client, or server) and appropriate sandboxes for them
and relies on the user to classify programs according to
those labels. WindowBox [3] provides users with durable,
isolated Windows desktops, each associated with different
roles or security levels (e.g., work, home, or play). Tahoma
uses the Xen VMM to implement virtual machine sand-
boxes, each containing one Web browser instance. No shar-
ing is permitted between browser instances except through
Tahoma’s narrow browser system call API.

GreenBorder [12] provides a sandboxed environment
within Windows for the Internet Explorer and Outlook ap-
plications. GreenBorder works by virtualizing access to
Windows resources such as the file system or the registry,
and redirecting modifications of these resources to virtual-
ized copies. By permitting users to “flush” these changes,
any harmful side-effects from malicious content can be
cleaned. GreenBorder visually separate applications run-
ning within the sandbox from trusted applications, and pro-
vides some degree of auditing and reporting. Tahoma also
provides a sandboxed environment for Web browsers, but
Tahoma additionally isolates Web applications from each
other. As well, Tahoma permits Web services to customize

the browsers used to access them, and to control which re-
mote sites their browser instances can access.

5.3 Safely Executing Downloaded Appli-
cations

Tahoma shares the popular vision of making executable
content available on the Internet for users to download and
run safely. Jaeger et al. [15] describe a distributed sys-
tem for authenticating and executing content from remote
principals. They provide a rich policy structure for assign-
ing access rights to local resources; in contrast, Tahoma
uses the shared-nothing abstraction of VMs to isolate down-
loaded browser instances from each other and from the host
OS. Web browsers support the safe execution of Java ap-
plets [8]. Applets have similarities to Tahoma browser in-
stances, though browser instances can be written in any lan-
guage, as their execution environment is a hardware VM.

The Collective project [22] encapsulates collections of
applications within VMware [29] virtual machines and
ships these compute “appliances” over the network to users.
Tahoma is similar in that browser instances are encapsulated
within VMs and downloaded to users. However, Tahoma’s
browser operating system mediates the access of browser
instances to local host resources and remote Web services.

SubOS assigns “sub-user IDs” to downloaded objects.
Processes that access these objects inherit the restricted ac-
cess rights of the associated sub-user IDs [14]. Using this
mechanism, this project re-factored a Web browser so that
isolation is delegated to SubOS rather than the browser
itself. This work has similar principles to ours, though
Tahoma uses stronger VM sandboxes, isolates browsers and
Web objects based on the Web applications to which they
belong, and provides a trusted window manager and other
user tools.

5.4 Trust and User Interfaces

Untrusted executable content can attack users by spoof-
ing the user interface of trusted executables, fooling the user
into providing sensitive information. Researchers have ex-
plored the potential for Web content to act as a trojan horse,
spoofing local OS interfaces or remote services [31, 9].
Modern “phishing” attacks are an increasingly prevalent
form of this attack.

The compartmented mode workstation (CMW) specifi-
cation [35] provides requirements for enforcing mandatory
access control in a multi-level or compartmented security
system, and describes how to label data and windows with
sensitivity labels. The trusted paths work by Ye et al. [36]
attempts to label Web browser windows in an unforgeable
way by clearly separating graphical content provided by re-
mote servers from status information provided by the local

browser. To prevent remote servers from spoofing status in-
formation, the trusted paths architecture uses synchronized
random dynamic boundaries, in which the color of win-
dow borders is randomly shifted but synchronized with a
reference window. The EROS [28] trusted window system
(EWS) solves the complementary problem of denying un-
trusted applications the authority to disrupt trusted UI paths.

Tahoma uses many of the mechanisms and window la-
beling techniques from this body of work, but adapts them
to a virtual machine environment. Like EWS, Tahoma
browser instances use shared memory to convey pixel in-
formation to the trusted BOS window manager. Tahoma’s
windowing environment was also partially inspired by the
desktop operating environment winder server (DoPE) [10].

6 Conclusions

Over the last decade, the Web has evolved from a reposi-
tory of interconnected, static content to a delivery system
for complex, distributed applications and active content.
As a result, modern browsers now serve as de facto oper-
ating systems that must manage dynamic and potentially
malicious applications. Unfortunately, browsers have not
adapted to their new role, leaving the user vulnerable to
many potential threats.

This paper presented the architecture and implementa-
tion of Tahoma, a new Web browsing system intended to
improve safety and security for Web users. In the Tahoma
architecture, each Web application is isolated within its own
virtual machine sandbox, removing the need to trust Web
browsers and the services they access. Virtual machine
sandboxes contain the damage that can be caused by ma-
licious or vulnerable browsers. Consequently, Tahoma pro-
tects other applications, resources, and the user’s host OS
from these dangers.

We introduced a new trusted software layer in Tahoma,
the browser operating system (BOS), which manages Web
applications and their virtual machine sandboxes. To limit
damage from hijacked browsers, the BOS restricts the set
of sites with which each Web application can communicate.
The BOS gives users increased visibility and control over
downloaded Web applications. We implemented Tahoma
on the Xen virtual machine monitor. Our security evalua-
tion shows that Tahoma can prevent or contain 87% of the
vulnerabilities that have been identified in the widely used
Mozilla browser. Our performance evaluation demonstrates
that users need not sacrifice performance for the benefits of
stronger isolation and safety.

7 Acknowledgments

The authors are grateful for the insightful feedback pro-
vided by the anonymous reviewers, and for helpful dis-

cussions with Brian Bershad, Ed Lazowska, and Andrew
Schwerin. This work was supported in part by the National
Science Foundation under grants CNS-0430477, CCR-
0326546, and ANI-0132817, by an Alfred P. Sloan Founda-
tion Fellowship, by the Wissner-Slivka Chair, by the Torode
Family Endowed Career Development Professorship, and
by gifts from Intel Corporation and Nortel Networks.

References

[1] A. Acharya and M. Raje. MAPbox: Using parameterized
behavior classes to confine untrusted applications. In Pro-
ceedings of the Ninth USENIX Security Symposium, Denver,
CO, August 2000.

[2] V. Anupam and A. Mayer. Security of web browser scripting
languages: Vulnerabilities, attacks, and remedies. In Pro-
ceedings of the Seventh USENIX Security Symposium, San
Antonio, TX, January 1998.

[3] D. Balfanz and D. R. Simon. Windowbox: A simple secu-
rity model for the connected desktop. In Proceedings of the
Fourth USENIX Windows Systems Symposium, Seattle, WA,
August 2000.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th Sympo-
sium on Operating System Principles (SOSP 2003), Bolton
Landing, NY, October 2003.

[5] M. Bartel, J. Boyer, B. Fox, M. LaMacchia, and E. Si-
mon. XML-signature syntax and processing. W3C rec-
ommendation, published at http://www.w3.org/TR/
xmldsig-core/, February 2002.

[6] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-
specific file protection for the UNIX operating system. In
Proceedings of the 1995 Winter USENIX Conference, New
Orleans, LA, January 1995.

[7] C. Cowan, S. Beattie, G. Kroach-Hartman, C. Pu, P. Wagle,
and V. Gligor. Subdomain: Parsimonious server security.
In Proceedings of the 14th USENIX Systems Administra-
tion Conference (LISA 2000), New Orleans, LA, December
2000.

[8] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java
security: Web browsers and beyond. Chapter 7 of “Internet
besieged: Countering cyberspace scofflaws”. ACM Press,
New York, NY, 1997.

[9] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web
spoofing: an Internet con game. In Proceedings of the 20th
National Information Systems Security Conference, Balti-
more, MD, October 1996.

[10] N. Feske and H. Härtig. DOpE – a window server for real-
time and embedded systems. In Proceedings of the 24th
IEEE International Real-Time Systems Symposium, Cancun,
Mexico, December 2003.

[11] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In
Proceedings of the Sixth USENIX Security Symposium, San
Jose, CA, July 1996.

[12] Green Border Technologies. GreenBorder desktop DMZ so-
lutions. http://www.greenborder.com, November
2005.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and
S.-Y. Kuo. Securing Web application code by static analysis
and runtime protection. In Proceedings of the Thirteenth In-
ternational World Wide Web Conference (WWW 2004), New
York, NY, May 2004.

[14] S. Ioannidis and S. M. Bellovin. Building a secure Web
browser. In Proceedings of the FREENIX track of the 2001
USENIX Annual Technical Conference, Boston, MA, June
2001.

[15] T. Jaeger, A. D. Rubin, and A. Prakash. Building sys-
tems that flexibly control downloaded executable content. In
Proceedings of the Sixth USENIX Security Symposium, San
Jose, CA, July 1996.

[16] R. J. Kaes and S. Young. The tinyproxy lightweight
HTTP proxy. http://tinyproxy.sourceforge.
net, August 2004.

[17] P.-H. Kamp and R. N. Watson. Jails: Confining the omnipo-
tent root. In Proceedings of the Second International System
Administration and Networking Conference (SANE), Maas-
tricht, The Netherlands, May 2000.

[18] Konqueror. http://www.konqueror.org.
[19] T. Mitchem, R. Lu, and R. O’Brien. Using kernel hypervi-

sors to secure applications. In Proceedings of the 13th An-
nual Computer Security Applications Conference (ACSAC
’97), San Diego, CA, December 1997.

[20] MPlayer. http://www.MPlayerHQ.hu.
[21] D. S. Peterson, M. Bishop, and R. Pandey. A flexible con-

tainment mechanism for executing untrusted code. In Pro-
ceedings of the Eleventh USENIX Security Symposium, San
Francisco, CA, August 2002.

[22] C. Sapuntzakis and M. S. Lam. Virtual appliances in the
Collective: A road to hassle-free computing. In Proceedings
of the Ninth Workshop on Hot Topics in Operating Systems
(HotOS IX), Lihue, HI, May 2003.

[23] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and
analysis of spyware in a university environment. In Proceed-
ings of the First Symposium on Networked Systems Design
and Implementation (NSDI ’04), San Francisco, CA, March
2004.

[24] B. R. Schatz. NCSA Mosaic and the World Wide Web:
Global hypermedia protocols for the Internet. Science,
265:841–1004, August 1994.

[25] D. Scott and R. Sharp. Abstracting application-level Web
security. In Proceedings of the Eleventh International World
Wide Web Conference (WWW 2004), Honolulu, HI, May
2002.

[26] Secunia. Microsoft Internet Explorer window injection
vulnerability. http://secunia.com/advisories/
13251/, December 2004.

[27] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP’99), Kiawah
Island, SC, December 1999.

[28] J. S. Shaprio, J. Vanderburgh, E. Northup, and D. Chizma-
dia. Design of the EROS trusted window system. In Pro-
ceedings of the Thirteeenth USENIX Security Symposium,
San Diego, CA, August 2004.

[29] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualiz-
ing I/O devices on VMware workstation’s hosted virtual ma-
chine monitor. In Proceedings of the 2001 Annual USENIX
Technical Conference, Boston, MA, June 2001.

[30] S. L. Teal and A. I. Rudnicky. A performance model of
system delay and user strategy selection. In Proceedings
of the SIGCHI conference on Human factors in computing
systems, Monterey, CA, May 1992.

[31] J. Tygar and A. Whitten. WWW electronic commerce and
Java trojan horses. In The Second USENIX Workshop on
Electronic Commerce Proceedings, Oakland, CA, Novem-
ber 1996.

[32] VMware, Inc. Browser appliance virtual ma-
chine. http://www.vmware.com/vmtn/vm/
browserapp.html, October 2005.

[33] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible security architectures for Java. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles
(SOSP ’97), Saint Malo, France, October 1997.

[34] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings of
the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’02), Boston, MA, December 2002.

[35] J. P. Woodward. Security requirements for system high and
compartmented mode workstations. Technical Report MTR
9992, The MITRE Corporation, 1987.

[36] Z. Ye and S. Smith. Trusted paths for browsers. In Pro-
ceedings of the Eleventh USENIX Security Symposium, San
Francisco, CA, August 2002.

[37] ZDNet UK. Firefox phishing vulnerability discov-
ered. http://news.zdnet.co.uk/internet/
security/0,39020375,39183106,00.htm.

