
Operating System Implications of Fast, Cheap, Non-Volatile Memory

Katelin Bailey Luis Ceze Steven D. Gribble Henry M. Levy
University of Washington

Department of Computer Science & Engineering
{katelin, luisceze, gribble, levy}@cs.washington.edu

Abstract. The existence of two basic levels of storage
(fast/volatile and slow/non-volatile) has been a long-standing
premise of most computer systems, influencing the design
of OS components, including file systems, virtual memory,
scheduling, execution models, and even their APIs. Emerging
resistive memory technologies – such as phase-change memory
(PCM) and memristors – have the potential to provide large,
fast, non-volatile memory systems, changing the assumptions
that motivated the design of current operating systems. This
paper examines the implications of non-volatile memories on a
number of OS mechanisms, functions, and properties.

1 Introduction

New memory technologies promise game-changing fea-
tures whose impact felt broadly, from embedded comput-
ers to mobile devices to datacenters. For example, phase-
change [14] and memristor [15] memories can provide
fast, inexpensive, non-volatile, highly dense (denser than
DRAM), byte-addressable storage systems. Think of the
impact of a terabyte byte-addressable persistent storage
chip on your mobile phone.

The architecture research community is actively ex-
ploring [9] the implications of fast, cheap non-volatile
memory, including error correction mechanisms and
memory hierarchy organization. Software research has
focused primarily on NVRAM-based file systems that
maintain current file system semantics [6] and on pro-
gramming interfaces for persistent objects [3]. These ef-
forts are evolutionary: they integrate NVRAM into ex-
isting architectures and programming structures.

Instead, we believe that NVRAM could be revolu-
tionary rather than evolutionary; this paper seeks to
discuss the ways that cheap byte-addressable NVRAM
could substantially affect OS design. For example, new
NVRAM technology might change the basic premise of
a two-level store (a fast primary memory and a slow
secondary memory) that we have assumed for over 50
years. The structure of moving-head disks impacts the

entire system structure, including the I/O system, vir-
tual memory, the protection system, the scheduler, the
way that processes are managed, and the way that pro-
grams are initiated. What if future systems contained
only one level of memory that was persistent and uni-
form? What if there were no disk pages, no memory
pages, no buffer cache, no page faults, no swapping, no
booting on restart? How would we choose to organize
the OS and persistent storage? How would we structure,
share, and protect persistent storage? What parts of the
OS could we simplify or remove, and what features or
capabilities would be enabled by this technology?

The goal of this paper is not to propose a specific
system, but simply to raise potential issues, questions,
and opportunities that NVRAM technology presents for
OS design. In the following sections we first discuss
NVRAM technology and then examine some of the
OS components and functions whose traditional designs
might be reexamined for NVRAM-based systems.

2 Hardware alternatives

Cell Technology. Phase-change memory (PCM) and
memristors are among the most viable of emerging cell
technologies for cheap NVRAM. PCM cells are based on
a chalcogenide material that, when heated, can be cooled
into crystalline or amorphous states that have very dif-
ferent resistivity properties, hence encoding binary infor-
mation. Memristors are passive two-terminal circuit ele-
ments whose resistance is a function of the history of cur-
rent that flowed through the device. We focus on PCM
in this section. Though not entirely commercially viable
yet, there are several PCM prototypes available. One of
the key challenges with current PCM technology is its
relatively limited write lifetime (order of 108 writes).

Most of the work on PCM in the architecture com-
munity has focused on improving lifetime via wear-
leveling [9] and exploring where PCM fits in the mem-
ory hierarchy [13]. Interestingly, several architectural al-



Disk DRAM

CPU

DRAM

CPUNVM
file 

system DRAM

CPU

NVRAM

CPU

NVRAM

A. Current System C. Shared Address
Space

B. Replace Disk D. Entirely NVRAM

Figure 1: System architecture options for NVRAM.

ternatives focus on PCM mostly for its density, since it
is projected to be denser than DRAM; in this context,
non-volatility properties are largely unexploited. Cur-
rent PCM cells have access delays of up to 150ns (writes
are much slower than reads), which is several times
slower than DRAM. However, some proposals mitigate
this characteristic [9] with careful buffer organizations
and show that most applications suffer only a slowdown
of a few percent. Moreover, expected improvements in
device technology are likely to further close this gap.

Architectural Alternatives. To set the stage for our
discussion of operating system design in the next sec-
tion, we first examine several architectural alternatives
that are relevant to OS design, focusing on the hardware-
software interface. To simplify the discussion, we ignore
I/O. Figure 1 shows a progression of options, from a con-
ventional system with CPU, DRAM and disk (option A)
to a system with only CPU and NVRAM (option D).

The most direct and straightforward option (B) is
to simply replace disks with NVRAM, since NVRAM
could be seen as a dense and fast form of previous non-
volatile storage technologies. This maintains many of
the disk semantics that programmers are used to; it is
essentially plug-and-play and changes very little other
than secondary store access speed. Even the packaging
and access interface (via an I/O bus) are the same as for
normal disks. In essence there are two distinct address
spaces, one for non-volatile data and one for volatile
data. This is a logical evolution in solid-state disks – sim-
ply replacing current flash-based SSDs with PCM, which
is two orders of magnitude faster.

The next option (C) is to move the NVRAM to the
same physical address space as DRAM. Here the CPU
sees two types of memory, one volatile and one non-
volatile. This is more interesting (and general pur-
pose) than the previous option, because NVRAM can
be conveniently accessed with regular CPU load and
store instructions. Previous systems have taken advan-
tage of physical memory with heterogeneous characteris-
tics, for example, non-uniform-memory-access (NUMA)
machines offer uniform addressing but different access
latencies depending on where data is located.

At the end of the spectrum is a system with only
NVRAM in a single, flat, non-volatile physical mem-

ory space (D). This is the most advanced alternative,
as it requires NVRAM to be as fast as DRAM so that
the non-volatility of memory does not come at a perfor-
mance cost. Such performance might be achieved by ad-
vances that make NVRAM cells as fast as DRAM cells
or through the use of non-volatile caches and enough re-
serve energy (e.g., in large capacitors) to write caches
back in case of a power failure. Relatedly, the previous
alternative (C) is likely the most flexible from a hardware
implementation perspective, because it allows NVRAM
and DRAM to have different performance and power
characteristics. Although the hybrid system (C) is the
most flexible and potentially provides numerous areas
of research into the interaction of DRAM and NVRAM,
we chose to purse the more radical OS opportunities af-
forded by the all-NVRAM option (D).

3 OS implications

NVRAM has the potential to influence the design of ma-
jor operating system components, program and OS exe-
cution models, and the performance and reliability char-
acteristics of the overall system. We discuss each of these
topics in turn.

3.1 OS Components
Virtual Memory. Today’s computers have two levels
of storage: slow, large capacity, durable secondary stor-
age, and fast, smaller capacity, volatile primary memory.
Many aspects of VM design are influenced by this.

• Paging. Virtual memory systems treat primary
memory as a fast cache of secondary storage, pag-
ing data between these two levels. A computer with
only NVRAM has one level of physical storage, not
two, and no longer needs to page.1

• Page granularity. VM systems treat the page as the
unit of allocation, hardware protection, and trans-
fer between primary memory and disk. Page size is
influenced by many factors, including minimizing
fragmentation, amortizing the latency of disk seeks,
and minimizing the overhead of page table struc-
tures. In an NVRAM-based computer, pages could
still be useful for address translation, protection,
and memory management (e.g., system-supported
garbage collection); however it is no longer clear
what page size is appropriate, as many of the factors
noted above will change or be eliminated. More ag-
gressively, one can imagine mechanisms for mem-
ory protection and allocation that do not use pages

1RAMCloud [12] uses large DRAMs to remove secondary store and
paging as well. They focus on improving performance for datacenter
applications, while we focus on the OS implications of non-volatility.



at all (e.g., [16, 10]), which might be especially in-
teresting in an all-NVRAM system.

• Separate protection systems for primary and
secondary storage. Virtual memory provides
hardware-enforced page-granularity protection,
whereas file systems have a richer but coarser
protection structure. In an NVRAM-based com-
puter, both protection systems might need to be
reconsidered. Since there is only one level of
storage, hardware-enforced protection and the
protection abstractions the OS provides will likely
need to reflect each other more closely, and perhaps
they can even be unified.

• Multiple address spaces. Today’s VM systems
provide separate address spaces for each process,
whereas file systems expose a single global names-
pace. Given that an NVRAM-based computer has a
single, fast, large-capacity store, alternative struc-
tures such as single-address-space operating sys-
tems [5] might be more appropriate, especially if we
simultaneously reconsider how protection works.

Overall, the existence of large-scale, dense, byte-
addressable persistent memory calls into question many
properties of traditional virtual memory systems. Virtual
memory can be re-architected, simplified, or generalized
for computers with a single level of durable, fast storage.

File systems. File systems for non-volatile memory
have already received significant research attention. For
example, Condit’s work on BPFS [6] demonstrates that
file systems that optimize for byte addressability can
achieve significantly higher performance on non-volatile
storage than existing sector-oriented file systems.

However, fundamental questions remain. BPFS is still
predicated on a computer with two levels of physical
storage: it redesigns the file system to reflect a different
secondary storage technology, but it keeps the same API
and does not consider how storage should be organized
on a system with only non-volatile memory. A major
question for an NVRAM-based computer is whether the
operating system should expose a single logical storage
system to programs and users, similar to Multics [1], or
whether it is still better to provide separate interfaces and
semantics for virtual memory and file systems.

3.2 Execution Models
In NVRAM-based systems, nearly all execution state is
durable.2 Even with unmodified operating systems and

2Processor registers and cache might still be volatile, but processors
could use capacitance-based energy reserves to stash transient state in

applications, after power is lost and restored, such a com-
puter should have the ability to resume execution where
it left off, with the exception of re-establishing any lost
volatile device state. More broadly, non-volatile mem-
ory could influence our models of how programs are in-
stalled, launched, and executed, what it means to boot,
and how systems handle software faults.

3.2.1 Applications and Processes

Non-volatile memory can affect several aspects of how
users, programmers, and operating systems interact with
applications and running processes.

Application installation and launch. Today, applica-
tions exist in three different forms: their packaged state
prior to installation, their post-installed state in the file
system, and their execution state when launched into pro-
cesses. Non-volatile storage has the potential to blur the
boundaries between these, similar to how cheap check-
pointing and migration have blurred the same boundaries
for virtual machines and appliances [4].

Instead of shipping in packaged form, applications
could ship as checkpoints of an executing process, as-
suming that the checkpoint can be taken at a “conve-
nient” moment where there are as few dependencies as
possible in the underlying OS, such as outstanding sys-
tem calls. Independently, instead of distinguishing be-
tween inactive applications and active processes, every
application that is resident on a local computer could be
perpetually “active,” since its execution state is durable
and, in effect, is a checkpoint for the process. The con-
cept of launch would no longer need to be exposed to
users, and instead applications are scheduled whenever
some form of input (user, device, or other event) is di-
rected towards them.

Faults. If an application experiences a fault, however,
a persistent address space can become a liability: some
mechanism needs to be in place to recover, rollback,
or otherwise rejuvenate the application. One possibil-
ity is for the system software to automatically check-
point program execution over time, using logs of non-
deterministic inputs or copy-on-write chains of the pro-
gram’s execution state. Given this, transparent rollback
recovery could be attempted, though there are known
limits [11]; instead, operating systems and users might
need to identify safe checkpoints to which programs can
revert. As well, even though NVRAM is expected to be
large and cheap, logs or checkpoint state will eventually
need to be garbage collected.

non-volatile memory when power is lost. Device state, such as in-flight
packets or GPU state, is another concern.



Update. If applications never terminate, updating ap-
plications becomes more tricky. The simplest case is to
treat an update as a separate version or checkpoint of
the application, allowing users to choose when to switch
between old and new, though this is undesirable in the
case of urgent security patches. In the extreme, system
software or users might be able to name any historical
checkpoint of application state and switch execution to
that checkpoint at any time; updates just become new
branches in the historical timeline. Other alternatives
include hot-patching a running program, which seems
technically messy and complex, or re-introducing a no-
tion of halting and restarting an application to update it.

More generally, as the differences between long-term
durable application state and short-term transient execu-
tion state diminish, we need to reconsider who decides
when and how to launch, quit, and reset an application,
and what these concepts mean. Is it the user, the applica-
tion developer, or the OS who makes these decisions?

3.2.2 Operating Systems

Many of the questions raised about execution models ap-
ply to operating systems as well. Today, OS boot (or
reboot) is an all-too-frequent event. Given non-volatile
memory, we can change the idea that a power cycle must
trigger the loss of OS execution state and system re-
initialization. Instead, power loss and software rejuve-
nation can be completely decoupled from each other.

Given this, we can imagine several alternatives. For
simplicity, we could choose to couple power loss with
“reboot.” At the other extreme, the entire system could
resume uninterrupted after power is restored. In between
are designs that microreboot or selectively rejuvenate OS
data structures, components, or applications [2], such as
by rolling back to checkpoints or equilibrium states.

These questions extend to the kernel, devices, and
power management. While some system structures could
be durable after power loss, others—such as those deal-
ing with network and I/O devices—may need to be reex-
amined and updated. Along these lines, NVRAM gives
systems more flexibility to power down subsets of the
computer. Some I/O devices may be able to continue
DMA transfers, even when the CPU is powered off, as
long as NVRAM receives power. Similarly, the OS could
cause power to stop flowing to the CPU and memory
completely when the system is completely idle, quickly
resuming when work arrives via an external device with-
out needing to reload memory context.

3.3 System Characteristics
Because NVRAM is non-volatile, it has the potential to
influence reliability, security, and privacy. We believe

it can be beneficial to systems and users, but some care
must be taken, to avoid harmful consequences.

3.3.1 Reliability

Because all execution state is non-volatile and power
failure is decoupled from system failure, NVRAM-based
systems can be more reliable: data is less likely to be lost
after a crash. However, two issues arise:

• Data corruption. If a hardware or software fault
corrupts application state, then that corruption is
non-volatile, particularly if the system has a single-
level store. A benefit of having a two-level store is
that data is (implicitly or explicitly) scrubbed as it is
transferred between the levels. As well, with the ex-
ception of mmap’ed data, memory corruption is un-
likely to propagate to the file system. An NVRAM-
based system might need to give programmers ab-
stractions to regain this kind of resilience.

• Data portability. Hard drives and SSDs can
be physically removed from one computer and
mounted on another, as file system formats are in-
dependent of specific computer configurations and
system architecture. NVRAM-based systems might
lose this property, both because NVRAM might not
be easily removable by users, and because NVRAM
will contain non-portable architecture-specific exe-
cution state as well as potentially portable applica-
tion data. Either OSs need to provide applications
with a way to separate out the two kinds of state, or
perhaps it is finally time to assume that all migration
of data between devices will happen over networks
and through the cloud.

3.3.2 Security, Privacy, and Forensics

Users’ computing devices are increasingly theft-prone,
thanks to the proliferation of laptops, pads, and smart-
phones. As well, computers are still susceptible to at-
tack by remote adversaries or local malware. In either
case (theft or intrusion), critical data on the device is at
risk. Since execution state is durable even after a device
is powered down, NVRAM can exacerbate this risk [7]:
NVRAM makes cold-boot attacks [8] trivial to perform.

Volatility is therefore beneficial in some cases. For ex-
ample, applications should explicitly destroy encryption
keys and decrypted data after finishing with them. If an
application forgets to do this or is not given the opportu-
nity because of a crash or malicious halt, then it would be
helpful if the hardware or OS ensured the memory used
to store them was volatile. This could be done physically,
by including some volatile RAM in hardware, or virtu-



ally, by having the OS use some combination of encryp-
tion or post-deallocation scrubbing on top of NVRAM.

Non-volatility could also improve forensic capabili-
ties. If the OS provides frequent checkpoints, durable
logs, or uses COW to preserve historical execution state
in NVRAM, more information is available for forensic
tools after an incident. On the other side of this coin
lies privacy and confidentiality: if these forensic logs are
not adequately protected, or in the absence of adequate
garbage collection policies, the risk of information dis-
closure after theft or break-in is amplified as data will
endure indefinitely.

We suspect that operating systems and programming
languages will need to let programmers and applications
help manage issues of volatility and durability. Only ap-
plications are aware of the meaning of certain types of
data, and in some cases, only users will be able to in-
dicate the risks of losing (or retaining) different pieces
of information. Devising appropriate abstractions and
mechanisms for managing this at the OS, language, and
application level is an open problem.

4 Conclusions

This paper discussed the OS implications of new
NVRAM in future systems. While OS changes are not
strictly required by NVRAM, we believe that it offers an
opportunity or incentive to finally update the 40-year-old
architecture that still underlies most of today’s operating
systems. We are currently working on a new operating
system whose design is motivated by future NVRAMs.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. We thank Wen-Hann Wang and Richard Uh-
lig for their insight during earlier discussions of this
work. This work was supported by NSF grants CNS-
0627367 and CNS-1016477, the Torode Family Career
Development Professorship, the Wissner-Slivka Chair,
and gifts from Intel Corporation and Nortel Networks.

References
[1] A. Bensoussan, C.T. Clingen, and R.C. Daley. The mul-

tics virtual memory: Concepts and design. Communica-
tions of the ACM, 15(5), May 1972.

[2] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, and Armando Fox. Microreboot – a technique
for cheap recovery. In OSDI ’04, December 2004.

[3] Adrian M Caulfield, Arup De, Joel Coburn, Todor I
Mollov, Rajesh Gupta, and Steven Swanson. Moneta: A
High-performance Storage Array Architecture for Next-
generation, Non-volatile Memories. MICRO, 2010.

[4] Ramesh Chandra, Nickolai Zeldovich, Constantine Sa-
puntzakis, and Monica S. Lam. The Collective: A cache-
based system management architecture. In NSDI 2005,
May 2005.

[5] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-space operating system. ACM Transactions on
Computer Systems, 12(4), 1994.

[6] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin C. Lee, Doug Burger, and
Derrick Coetzee. Better I/O Through Byte-Addressable,
Persistent Memory. SOSP, 2009.

[7] William Enck, Kevin Butler, Thomas Richardson, Patrick
McDaniel, and Adam Smith. Defending Against Attacks
on Main Memory Persistence. In ACSAC 2008.

[8] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A. Calandrino,
Ariel J. Feldman, Jacob Appelbaum, and Edward W. Fel-
ten. Lest we remember: Cold boot attacks on encryption
keys. In USENIX Security, July 2008.

[9] B.C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
E. Ipek, O. Mutlu, and D. Burger. Phase-change technol-
ogy and the future of main memory. Micro, IEEE, 30(1),
2010.

[10] Henry M. Levy. Capability-Based Computer Systems.
Digital Press, 1984.

[11] David E. Lowell, Subhachandra Chandra, and Peter M.
Chen. Exploring failure transparency and the limits of
generic recovery. In OSDI, October 2000.

[12] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazieres, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. Rumble, E. Stratmann,
and R. Stutsman. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. SIGOPS
Operating Systems Review, 43(4), December 2009.

[13] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and
Jude A. Rivers. Scalable High Performance Main Mem-
ory System Using Phase-change Memory Technology. In
ISCA ’09, 2009.

[14] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-
C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen,
H.-L. Lung, and C. H. Lam. Phase-Change Random Ac-
cess Memory: A Scalable Technology. IBM J. Res. Dev.,
July 2008.

[15] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart,
and R. Stanley Williams. The Missing Memristor Found.
Nature, March 2008.

[16] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In ASPLOS, 2002.


