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Abstract
The availability of a P2P service is a function of the indi-
vidual peers’ availabilities, and it is often desirable to esti-
mate how available a particular P2P service will be given
the availability of its peers. Prior work in this area has
widely used the fraction of time the average peer is avail-
able as the basis for this estimate. We show here that this
approach has serious drawbacks. We develop a different
measure, which we call presence-based availability, which
takes into account the availability of the individual peers.

Using traces of live P2P systems taken from the liter-
ature, we demonstrate that presence-based availability is a
more reliable indicator of potential performance than prior
methods. We show that our metrics successfully estimate
the availability of a P2P file-sharing system. Then, us-
ing presence-based measures to make a better estimate of a
parameter in a highly-available system, we achieve a 75%
decrease in resource usage relative to an existing technique
relying on traditional metrics.

1. Introduction
Peer-to-peer file-sharing systems have had enormous im-

pact, dramatically affecting Internet traffic [21] and in-
spiring researchers to consider peer-to-peer architectures
in other problem domains. Recently, P2P systems have
been proposed as a novel approach to providing distributed
storage services [17, 14, 18, 13, 12]. By harnessing a large
collection of individually managed machines, P2P storage
systems have the potential to provide a scalable, highly-
available storage service while eliminating centralized man-
agement.

In contrast to a dedicated centralized system, a P2P sys-
tem must contend with the fact that its constituent com-
ponents have a large degree of autonomy. Specifically, the
machines that choose to participate in a P2P system are not
administered centrally, and may exhibit high heterogeneity
in performance, trustworthiness, and availability [20]. In
this paper, we focus on the issue of availability.

It is useful in what follows to distinguish among three
different measures of availability, independently of the ap-
proach used to compute them. These are:

• peer availability - the extent to which a single peer
contributes to the P2P service, based on the times at
which it is online and willing to participate.

• workload availability - the average of the peer avail-
abilities across all peers. This is often used as a coarse

measure of the difficulty of hosting available P2P ser-
vices on that peer set.

• service availability - the extent to which the P2P sys-
tem is able to satisfy client requests. Because individ-
ual peers, and so the resources they provide, are often
unavailable, P2P systems typically employ some form
of replication to achieve high service availability.

Peer and workload availabilities are determined by user be-
havior, and for that reason can be viewed as characteristics
of a user population. Service availability is a reflection of
the replication strategies of the P2P system, as well as the
behavior of the peer population.

In studying P2P availability, many researchers have based
their measures of peer and workload availability on the
metric traditionally used for managed servers: the fraction
of time the server is online. We refer to this as a time-
based approach. While appropriate for managed systems,
where individual server availability tends to be very high
and server nodes are distinct from client nodes, time-based
availability has shortcomings in P2P systems, where nei-
ther assumption applies. When comparing among different
peer sets, the time-based measure of workload availability
is often used to imply that one set of peers is more avail-
able than another, irrespective of service availability. In
Section 2, we show that this definition of availability has
serious drawbacks that make it unsuitable for this purpose.

In Section 3 we present our approach: presence-based
availability. Presence-based availability defines the avail-
ability of an individual peer in proportion to the number
of other clients online at the same time. We then extend
the presence-based peer availability measure in a natural
way to define workload and service availabilities. These
measures address the shortcomings of the time-based mea-
sures, which assume independent uptimes and mask the
unequal distribution of availability among peers.

We evaluate our work in Section 4 by demonstrating how
the presence-based view of availability can help improve
P2P system design and operation. Using existing traces of
peer availability, we show that our service availability met-
ric provides a good prediction of measured service availabil-
ity in a simulation of a P2P file-sharing system. We also
consider a system design issue: the amount of redundancy
required to achieve a specified service availability level. We
replicate an earlier study that used time-based service avail-
ability metrics, and show that they overestimate the nec-
essary level of redundancy. By using presence-based avail-
ability metrics to obtain a better estimate, we are able to
achieve the same level of target availability while reducing



resource consumption by 75%.
Finally, we survey related work and conclude in Sec-

tions 5 and 6.

2. Time-Based Availability
We begin this section by reviewing the time-based avail-

ability measures widely used in prior work. We then illus-
trate a number of shortcomings they have through a set of
examples.

2.1 Definitions

The existing, time-based measure of peer availability is
simply the fraction of time that a peer is connected to the
P2P system [5, 6, 11, 16, 20, 22, 7]. The corresponding
workload availability measure is the average peer availabil-
ity. Both are easily computed from trace data. Let P be the
set of all peers observed, and P ≡ |P| the number of peers.
Let zp be the number of connection sessions observed for
peer p ∈ P, tp,k be the length of the kth such session, and
T the length of the trace interval. Then the availability of
peer p, Up, is

Up ≡

Pzp
k=1 tp,k

T
(1)

and the workload availability, Ū, is:

Ū ≡
1

P

X

p∈P

Up (2)

Note that these availabilities are simply averages over time,
and that Ū is cheap to compute, requiring time O(

P

p∈P
zp).

Because service availability is influenced by the design
of the P2P system, defining it requires that one make an
assumption about that design. Most importantly, service
availability must characterize the measures taken by the
P2P system to overcome the intermittent availability of the
peers. This usually involves making redundant copies of a
single object. Typically, a version of “k-of-n” redundancy
scheme is used, in which n copies (or, in the case of erasure
coding, partial copies) of the object exist, and a peer must
retrieve k of these to obtain the complete object.

Service availability is thus the probability over the trace
interval that k of the n servers are available, averaged over
all possible sets of size n. Past work has widely used the
average peer availability Ū as the probability that any one
peer is available. This leads to a straightforward expression
for service availability, U<k,n>, as a function of k and n [7]:

U
<k,n> =

n
X

j=k

„

n

j

«

Ū
j(1− Ū)n−j (3)

2.2 Distributional Shortcomings

While the time-based service availability defined in Equa-
tion 3 is simple, it ignores all distributional information.
Thus, it is insensitive to any correlations among the upti-
mes of peers. It is also insensitive to the possibly unequal
distribution of uptimes across the peers, depending only on
the total. Both of these factors can strongly influence the
effectiveness of a P2P system, which ultimately depends on
the simultaneous connectivity of two or more peers.
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Figure 1. The effect of temporal affinity on availability. All
peers are restricted to be active only during a specific
fraction of each day, given by the X-axis. For exam-
ple, x = 0.5 might represent the case when peers are
only active from noon until midnight, and no peers
are active from midnight until noon.

We use a simple model to demonstrate each of these
factors. In this model, we start with 10 identical peers,
each connected 10% of the time, with uptimes chosen at
random from the measurement interval. We calculate the
actual service availability, as well as U<k,n>, using a set of
values for k and n under a “k-of-n” redundancy scheme.
By varying the interval in which uptimes are chosen and,
separately, the total uptime of peers, we demonstrate the
insensitivity of U<k,n> to the two factors described above.

Temporal affinity: Figure 1 shows the effect of tem-
poral affinity, where peers prefer certain times of day for
their connected activity (for example, because of diurnal
effects). To demonstrate this, we modify the above model
so that rather than choose uptimes at random through-
out the trace, all activity is restricted to a fraction of the
measurement interval indicated on the X-axis. At the left
end, users connect with equal probability at any time of
day. At the right end, there are only about 8 hours in each
day when users choose to connect. Although U

<k,n> is con-
stant across these scenarios, the probability of obtaining
service is strongly affected, with the probability increasing
as peers are more likely to be up at the same time. While
this model is somewhat unrealistic (it is doubtful that peers
would strictly avoid certain times of day), it suffices to show
that temporal affinity is a factor in P2P performance, and
measurements of actual P2P systems show patterns of user
connections that result in this kind of concentration. U<k,n>

is unable to distinguish among systems with differing time
of day preferences.

The distribution of uptimes across peers: Figure 2
shows the effect of unequal activity across peers. We again
modify the above model to change the fraction of time that
peers are connected. At the left of each graph, all peers are
connected exactly 10% of the measurement interval. The
X-axis values indicate the connected activity fraction for a
single, designated peer, increasing to the right. The activity
fractions of the other peers are reduced to hold Ū constant
at 10%. We show service availability to the designated peer
and to the other peers in separate graphs.

Once the designated peer reaches about 50% connec-
tivity, further increases have a strong effect on the ser-
vice availability to the other peers: if only a single peer
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Figure 2. Effects of the distribution of uptimes across peers. The connectivity of a designated peer increases along the
X-axis. The connectivities of all other peers are reduced to hold Ū constant at 10%. (a) Change in service availability
as seen by standard peers, and (b) Change in service availability as seen by designated peer.

is required, service availability increases, because the des-
ignated peer is very likely to be available. If two peers
are required, service probability drops, as all the peers ex-
cept the designated one have very low connectivities. Ser-
vice availability to the designated peer suffers as its own
connectivity increases for the same reasons. Clearly, the
distribution of activity across peers can have a significant
effect on the overall system. However, U<k,n> is unable to
distinguish among systems that differ in the localization of
connectivity to subsets of its peers.

2.3 Addressing These Problems

To help account for these effects, we introduce in the
next section a new class of availability measures. The basic
idea behind the new measures is quite simple: rather than
considering only the average behavior over the entire time
interval of the trace, define availability of a peer from the
point of view of one or more observers. For example, if over
some measurement interval whenever peer A is up, peer B

is also up, A views B’s availability as 100%, even if B is
up only 5% of the entire interval. That is, B’s presence, as
viewed by A, is 100%. This change accounts for the two
shortcomings described above, since it considers availability
as it relates to other peers rather than independently.

In general, we are suggesting the use of additional in-
formation to obtain a better estimate of availability. This
requires that each peer’s availability be gathered, rather
than an average, but this is standard practice even though
only the average is usually quoted. It may also require
additional computation, and this must trade off with the
value the additional information yields. We discuss the two
aspects of this tradeoff in Sections 3 and 4.

3. Presence-Based Availability
In this section we introduce new, presence-based mea-

sures of availability. To simplify the presentation, we first
outline measures for a “1-of-1” system (the service is avail-
able when a single, designated peer is available). We the ex-
tend these definitions to consider a general “k-of-n” system,

and show that the measures can be computed efficiently.

3.1 1-of-1 Presence-Based Availability

We use A<1>
{p} to denote the presence-based availability

of peer p with k = 1. Intuitively, it is the uptime of p

weighted by the number of peers online during each mo-
ment of uptime, and normalized by the average number
of peers up during the entire measurement interval. The
larger the number of peers online, the greater the proba-
bility that the peer necessary for use to receive service is
online.

Let T be the length of the measurement interval. Let
op(t), 0 ≤ t ≤ T, be the “online function” for p, having
value 1 at times t when p is online, and 0 otherwise. Let
NP(t) be the number of peers online at time t. Then

A
<1>
{p} ≡

R T

0
op(t)(NP(t) − 1)dt

R T

0
(NP (t) − op(t))dt

=

R T

0
op(t)(NP(t) − 1)dt

T(PŪ− Up)

A<1>
{p} is clearly between 0 and 1, reaching its minimum

when p is online only at times when no other peer is online,
and reaching its maximum when p is online only when all
other peers are also online.

We use Ā
<1,1> to denote the presence-based workload

availability with k, n = 1. Like the time-based measure, we
define workload availability in this case to be the average
peer availability:

Ā
<1,1> ≡

1

P

X

p∈P

A
<1>
{p}

In this simplest case, for the service to be available a
single, designated peer must be online. We present two
variants of service availability that differ in how that desig-
nated peer is chosen: uniformly at random, or in proportion
to the uptime of each peer. We denote the measure for the
former as A

<1,1>
random and for the latter as A

<1,1>
time .

Beginning with the purely random selection, we have:

A
<1,1>
random ≡

X

p∈P

1

P
A

<1>
{p} = Ā

<1,1>



That is, each peer is equally likely to be the one required
(since it is chosen at random). Then, the availability of a
specific peer, as seen from the vantage of the other peers,
is precisely what is measured by A<1>

{p} . Thus, service avail-
ability reduces to workload availability in this case.

A second way to define service availability (in the 1-of-
1 case) is to assume that each peer p is the one needed
in proportion to amount of time p participates in the P2P
system. This variant might be applied to P2P storage sys-
tems, for instance, for which it has been observed that the
most active peers were also the most likely to have copies
of the largest number of objects [16]. In this case we have:

A
<1,1>
time ≡

X

p∈P

Up

PŪ
A

<1>
{p}

since a peer p has probability
Up

PŪ
of being the one needed.

If so its availability as seen by other nodes is exactly A<1>
{p} .

3.2 k-of-n Presence-Based Availability

To extend from 1-of-1 peer availability to k-of-n avail-
ability requires two changes: considering sets of peers, rather
than individual ones, and considering the possibility that
only a subset of that set may be needed.

Let S be a set of peers whose availability we would like
to compute. We use A

<k>
S to denote the presence-based

availability of that set, under the assumption that any k

members of it are sufficient to consider the set available.
To compute A<k>

S , we must first extend the definition of the
online function op(t) (Section 3.1). Let OS(t) have value 1
if all peers in set S are available at time t and 0 otherwise.
We can compute OS(t) using a simple dynamic program.
Then:

A
<k>
S ≡

R T

0
O<k>

S (t)N(P−S)(t)dt
R T

0
N(P−S)(t)dt

=

R T

0
O<k>

S (t)N(P−S)(t)dt

T(PŪ −
P

s∈S Us)

(4)
where N(P−S)(t) is the number of peers not in set S online
at time t.

To define workload availability, Ā<k,n>, we average the
peer availabilities of all sets S ∈ P of size n:

Ā
<k,n> ≡

1

C(P, n)

X

S∈Fn(P)

A
<k>
S (5)

where Fn(P) is the set of all size n subsets of P, and
C(P, n) ≡ P!

(P−n)! n!
is the number of such subsets.

As in the 1-of-1 case, we distinguish between two kinds
of k-of-n service availability. In the first, the specific set
of n peers from which k are required is chosen at random
from among all such sets of that size. This type of service
availability, A

<k,n>
random, is given by:

A
<k,n>
random ≡

X

S∈Fn(P)

1

C(P, n)
A

<k>
S = Ā

<k,n> (6)

The second choice is to weight server sets containing peers
who are connected a large fraction of the time higher than
those containing only peers who are occasionally connected.
For this case we choose to assign weights that are propor-
tional to the product of the fraction of time each peer in the

server set is connected. Doing that, time-weighted service
availability is:

A
<k,n>
time ≡

X

S∈Fn(P)

Qn

i=1
Usi

G
A

<k>
S (7)

Here, we use si to mean the ith member of S, and G =
P

S∈Fn(P)

Qn

j=1 Usj
.

3.3 Computing presence-based availability

While the idea of presence-based availability provides a
nice conceptual framework, it poses a practical problem.
As shown in Equations 5-7, these measures involve essen-
tially enumerating all the subsets of P of size n. Because
there are C(P, n) such subsets, it would appear that com-
puting these availability measures is computationally infea-
sible. However, there exist polynomial time procedures to
compute them exactly. Due to space constraints, we do not
fully outline the derivation of these algorithms, but simply
present the results.

For A
<k,n>
random, first note that:

A
<0,n>
random = 1

Now, let PQ(j) be the fraction of time over the entire trace
that exactly j peers are available. Then we can iteratively
define A

<k,n>
random as:

A
<k+1,n>
random = A

<k,n>
random−

1
C(P−1,n)

1
N̄P

PP−n+k

j=k+1 j

„

j − 1
k

« „

P − j

n − k

«

PQ(j)
(8)

Use of this equation requires calculating PQ(j). Assuming
that the peer session start and stop times are in sorted
order in the trace, these can be computed in time O(Z∗),
where Z

∗ ≡
P

p∈P zp. This is identical to the time required

to compute Ū (Section 2.1).

We can derive an approach to computing A
<k,n>
time in a

manner similar to the analysis of A
<k,n>
random just given. The

result is somewhat more expensive, however, because as-
signing distinct weights to the server sets means that we
must consider not just how many peers are connected at
any moment (PQ(j))but the exact identities of those peers.
Though we do not outline the procedure here, suffice it to
say that a weighted version of PQ(j), updated with each

trace event, allows us to compute A
<k,n>
time in time O(Z∗n2).

3.4 Summary

In this section, we derived a new class of availability
measures that we call presence-based availability. These
measures take the perspective of individual peers attempt-
ing to gain service from other peers in the system, and are
specifically designed to take into account the shortcomings
with time-based availability outlined in Section 2. Despite
incorporating more information than time-based measures,
they remain efficient to compute.

4. Evaluation
The metrics developed in the previous sections were

specifically designed to handle the problems noted with
U

<k,n>, namely its insensitivity to temporal affinity and



variations in peer activity. However, these metrics are use-
ful only if they correctly reflect the performance of actual
systems. In this section, we validate the usefulness of our
metrics by evaluating them on data drawn from traces of
existing P2P systems, and show that they yield more ac-
curate and reliable measures and insights than those based
on U

<k,n>.

4.1 Trace Data

In order to evaluate our metrics, we require measure-
ments of availability in existing systems. We obtained two
traces previously described in the literature:

Kazaa trace. This trace of the Kazaa [1] P2P file-sharing
system was described in [16]. The trace was collected at
the University of Washington (UW) over the course of 203
days between May 28 and December 17, 2002. This trace
recorded only file transfers, using the times when a peer is
actively transferring as a proxy for availability, and thus is
a lower bound on the true availability in the system. In
this paper we are interested only in validating our met-
ric against a real system, rather than analyzing the spe-
cific properties of Kazaa users at UW, so using a lower
bound of true availability is acceptable. Because of the
sheer length of the trace, we consider select pieces chosen
from the university’s summer and fall quarters (and which
are thus comprised of two different user populations).

Overnet trace. The second trace is of the Overnet [2]
P2P file-sharing system, as described in [5]. This trace was
collected at the University of California, San Diego over
the course of 7 days between January 15 and 21, 2003. The
availability data is the result of actively monitoring 1,468
hosts chosen at random from a set of 84,000 hosts present
in the Overnet system on January 14, 2003. Hosts were
probed at a granularity of 20 minutes. The probe used an
application-level lookup, and thus hosts must be running
the Overnet system to be considered available in the trace.

Table 1 names and summarizes the properties of these
traces.

4.2 Service Availability Metrics as a Predictor of
Performance

In this section, we evaluate our service availability met-
rics by comparing them to the measured service availabil-
ity of an existing P2P file-sharing system. We show that
our metrics agree with the measured values far better than
traditional measures based on Ū. As our target system,
we chose to reimplement the Kazaa simulator described
in [16], and leverage it as a model of an existing P2P sys-
tem. This simulator uses the measured peer availability as
well as separate trace of object requests (again described
in [16]). When a peer issues an object request, it is satisfied
either from another peer (if one with that object is avail-
able) or from an artificial peer which holds every object
and is always available. The object then becomes available
on the requesting peer. The simulator is an idealization of
the Kazaa system: all peers are aware of each other and
are not limited in bandwidth or storage capabilities.

With these properties in mind, we can create an empir-
ical measure of service availability for the Kazaa simulator
which we can compare with our metrics of service avail-

ability. First, we give some definitions. A peer is up at
time t if it is actively connected to the system and avail-
able for requests. A peer is live at time t if there exists
times t1 and t2 such that t1 < t < t2 and the peer is up
at t1 and t2 (i.e. the peer has entered the system but not
yet left completely). Let S(n) be the set of requests such
that if r ∈ S(n), when request r is made exactly n peers
currently holding copies of the object sought by r are live.
Finally, let O(r) be 1 if a peer with the object requested
by r is up when r is made, and 0 otherwise. (Though in
the simulator the peer obtains the object from an artificial
source, we consider this situation a service unavailability.)
Our measure of service availability, which we modified the
simulator to compute, is then:

~A(n) ≡

P

r∈S(n) O(r)

|S(n)|
(9)

This is the measured probability that request r is satisfied
given that n copies exist at the time.

The values of this empirical measure can be directly
compared to those computed by our service availability
metrics. We consider the case k = 1, as Kazaa allows only
whole-file replication. In Kazaa, it has been noted that
the number of requests (and correspondingly, the number
of objects) from a given peer are correlated with the avail-

ability of that peer [16]. Thus, our A
<k,n>
time metric captures

most closely the dynamics of this system.
Figure 3 shows the measured service availability of our

Kazaa simulation over a subset of the traces in Table 1.
These traces cover two different time periods (summer and
fall quarters) and are of differing lengths (1 to 4 weeks). We
can see that there is higher service availability in the fall
quarter versus the summer quarter, and higher availability
in the shorter time periods versus the longer ones.

Figure 4(a) and (b) shows the results of evaluating both

A
<k,n>
time and U

<k,n> for k = 1 and varying n over the same

time intervals as above. We can see that the A
<k,n>
time metric

closely matches Figure 3 in predicted value, and the relative
orderings of the traces match. U<k,n>, on the other hand,
significantly underestimates the measured availability and,
in the case of Kazaa-S1 and Kazaa-F1A, does not match
the same relative ordering. These results indicate that
A

<k,n>
time is a better predictor of actual performance than

U
<k,n>. (We also carried out this comparison between the

four intervals Kazaa-F1A through D. While the results are
substantially the same, space limitations prevent us from
including those results.)

4.3 Service Availability Metrics as a Design Pa-
rameter

We also wished to determine the extent to which our
metrics could be used to guide design decisions in build-
ing highly-available systems. The Total Recall system [7]
strives to maintain high availability of files in a managed
P2P file system. They achieve this through a 3-step pro-
cess:

1. A centralized monitor records the availability of peers,
using traditional time-based metrics.

2. From the recorded availabilities, the system computes
a replication factor for individual files. The replica-



Trace Name Start Date Length (Days) # of Peers Ū Ā<1,1>

Kazaa-S1 July 26, 2002 7 1596 0.0528 0.0331
Kazaa-S4 July 26, 2002 28 3242 0.0202 0.0254
Kazaa-F1A October 11, 2002 7 4641 0.1162 0.1132
Kazaa-F1B October 18, 2002 7 4941 0.1128 0.1149
Kazaa-F1C October 25, 2002 7 4595 0.0951 0.0874
Kazaa-F1D November 1, 2002 7 4602 0.0934 0.0893
Kazaa-F4 October 11, 2002 28 8557 0.0376 0.1017
Overnet January 15, 2003 7 1469 0.3104 0.3156

Table 1. Characteristics of traces used in Section 4. The first 7 traces are taken from [16], the last from [5].
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Figure 4. Calculated values of (a) A

<k,n>
time and (b) U<k,n> (for k = 1) over traces
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Figure 3. Measured service availability of Kazaa over
traces

tion factor determines how many copies of a file are
maintained by the system.

3. When a peer holding a particular file leaves the sys-
tem, a replication manager maintains the replication
factor of the file by proactively copying it to a new
peer, chosen at random among those peers available
at the time the copy is made.

The Total Recall system relies on a measured value of Ū

to calculate a replication factor for files. While they con-
sider both whole-file replication and erasure coding (the
particular replication strategy is chosen by policy), we will
consider only whole-file replication in this section. Given Ū

and a target availability of A, they calculate the number of
copies c needed so that the probability of at least one peer
being up to serve the file is at least A:

A = 1− (1− Ū)c

(Note that this equation is a simplified form of Equation 3,

with k = 1, c = n, and U<k,n> = A.) Solving for c:

c =
log(1− A)

log(1− Ū)
(10)

Because of its reliance on Ū, Equation 10 will tend to
overestimate the number of copies needed, since it is as-
sumed that each peer is available an equal proportion of
the time. When availabilities are skewed, however, mak-
ing a copy onto a highly available peer will result in a net
increase in the availability of the object. Bhagwan, et al.
note themselves (see [7], Figure 3) that the empirically mea-
sured availabilities of objects in their simulations are much
higher than their target availabilities.

We sought to determine whether our metrics might yield
a better estimate of the number of copies necessary to main-
tain a target availability. Because Total Recall uses random
selection of hosts at the time a copy needs to be made, peers
with high availability will tend to be more likely to receive
copies of files than peers with lower availabilities, simply be-
cause they are more likely to be available when a decision
is made. Therefore, the A

<k,n>
time metric should accurately

reflect the dynamics of the system.
To validate whether A

<k,n>
time produces a better estima-

tion of the necessary replication factor, we reimplemented
the Total Recall simulator described in [7]. For a subset
of traces from Table 1, we calculated the number of copies
predicted by Equation 10 for a target availability of 0.99,
the value used in [7]. We also evaluated A

<k,n>
time for k = 1

and numerous values of n, and chose the smallest value of
n for which A

<k,n>
time ≥ 0.99. We ran Total Recall simu-

lations using both of these values, and measured the cor-
responding service availabilities. The results of these sim-
ulations are summarized in Table 2. CTR represents the



Trace Name Ū Target Avail CTR Avail(CTR) Xfers(CTR) CA Avail(CA) Xfers(CA) Avail(CA − 1)

Kazaa-F1A 0.1162 0.9900 38 0.9994 153,311 9 0.9921 35,822 0.9873
Kazaa-F1B 0.1128 0.9900 39 0.9999 294,854 11 0.9899 82,369 0.9863
Kazaa-F1C 0.0951 0.9900 47 1.000† 324,376 11 0.9913 75,234 0.9879
Kazaa-F1D 0.0934 0.9900 47 1.000 241,385 10 0.9917 50,781 0.9869
Overnet 0.3104 0.9900 13 0.9999 22,513 6 0.9897 10,516 0.9785

Table 2. Results of executing Total Recall simulation on various traces. The number of copies estimated by Equation 10
(CTR) far outweighs that estimated by A

<k,n>
time (CA). Using CA we are able to achieve the target availability with the

benefit of far fewer transfers to maintain those copies. (†All measured availabilities use 4 significant digits. Values of
1.000 have been rounded.)

number of copies predicted by Equation 10, and CA repre-
sents the number predicted by A

<k,n>
time . Avail(x) represents

the measured service availability given one of these values,
and Xfers(x) represents the number of object copies made
over the course of the simulation.

We first consider the measured service availability that
the two estimates provide. Figure 5(a) shows the measured
availability across 5 different traces using these values. We
derive similar results to [7], in that we find a much higher
measured availability than the target availability when us-
ing the number of copies predicted by Equation 10. A

<k,n>
time ,

however, predicts a far smaller number of copies, and yields
a measured availability much closer to the target availabil-
ity. Note also the precision with which A

<k,n>
time estimates

the number of copies. When we execute the simulations
with a replication factor one less than our computed value,
in all cases the measured availability is below the target.

The smaller number of copies predicted by our mea-
sure yields benefits in that fewer transfers are needed to
maintain that number. This results in bandwidth savings
throughout the system. Figure 5(b) shows the number of
transfers required over the traces to maintain the number
of copies estimated by the two measures. We can see that
the savings is significant; on average, we use 75% fewer
transfers to maintain the target availability. Note also that
these numbers do not reflect the price of initially seeding
the file copies: we save a similar amount of storage space
in that case.

Though one might argue in the abstract that higher
availability is better, recall that the target availability was a
parameter in this system. There is a clear tradeoff between
higher availability and higher bandwidth usage; which of
these to optimize for should be a conscious decision. In
that respect A

<k,n>
time is superior: it allows for precise con-

trol in making this decision.

4.4 Summary

In this section, we used published traces of existing peer-
to-peer file-sharing systems to validate the effectiveness of
our availability measures. We demonstrated that our mea-
sures generate service availability values that correspond
well to simulated Kazaa performance, outperforming the
traditional measure of service availability. We also demon-
strated the our metrics have a practical value: they predict
the replication factor needed to maintain high availability
in a P2P storage system better than those relying on tra-
ditional metrics.

5. Related work
Many system design and measurement studies have con-

sidered the problem of availability in the context of ho-
mogeneous, single-administration domains, such as Web
servers [19], RAID systems [10], clusters [9], or groups of
machines in a corporation [8]. These systems are usually
measured in terms of the number of “nines of availability,”
(Ū = .9999 corresponds to four “nines”) and typically have
such a high degree of availability that temporal affinity and
variation in activity are not significant. Ū (and probabilistic
combinations thereof) are reasonable measures of availabil-
ity in this kind of system.

Several projects [5, 11, 20, 22] have traced the availabili-
ties of peers in various P2P file-sharing systems, and noted
low availability, high skew in uptimes, and a high turnover
rate of peers. Each of these studies reports availability as
a distribution of Ū over hosts, and thus it is difficult to
compare the results generated by these studies, since each
gathered a trace of different length. Studies of ad-hoc wire-
less networks and chat systems [3, 4, 15] have found similar
behavior and availability distributions among users.

Bhagwan et al. [6, 7] proposed a model for estimat-
ing service availability in the face of a replication strategy,
and proposed a method to determine the number of copies
needed to maintain a desired level of service. However,
they relied on traditional measures of availability, and we
have shown that our metric does a far better job of estimat-
ing the number of copies necessary, resulting in improved
resource usage.

6. Conclusions
Several research projects have investigated the poten-

tial of peer-to-peer architectures in distributed storage sys-
tems. In this paper, we considered the question of how
to calculate a meaningful measure of availability in these
systems. We began by demonstrating that traditional avail-
ability measures based on notions of average uptime have
serious flaws in a P2P environment. We then presented a
new family of availability measures based on the idea of
measuring availability from the peer’s perspective.

We validated our new family of measures using data
drawn from traces of real P2P systems. We showed that
the estimates of service availability predicted by our metrics
matched those measured in a P2P file-sharing system. We
also demonstrated that our measures could be used to es-
tablish replication parameters in highly-available systems.
We showed that the number of copies estimated by our
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Figure 5. Performance in Total Recall using different replication factors. (a) Measured availability, and (b) Number of
transfers.

measures was far lower than that of traditional measures,
and while achieving the same target availability, we used
75% less bandwidth.
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