Keypad: An Auditing File System for Theft-Prone Devices

Roxana Geambasu John P. John

Steven D. Gribble

Tadayoshi Kohno Henry M. Levy

University of Washington
roxana, jjohn, gribble, yoshi, levy@cs.washington.edu

Abstract

This paper presents Keypad, an auditing file system for theft-
prone devices, such as laptops and USB sticks. Keypad pro-
vides two important properties. First, Keypad supports fine-
grained file auditing: a user can obtain explicit evidence that
no files have been accessed after a device’s loss. Second,
a user can disable future file access after a device’s loss,
even in the absence of device network connectivity. Key-
pad achieves these properties by weaving together encryp-
tion and remote key storage. By encrypting files locally but
storing encryption keys remotely, Keypad requires the in-
volvement of an audit server with every protected file access.
By alerting the audit server to refuse to return a particular
file’s key, the user can prevent new accesses after theft.

We describe the Keypad architecture, a prototype imple-
mentation on Linux, and our evaluation of Keypad’s perfor-
mance and auditing fidelity. Our results show that Keypad
overcomes the challenges posed by slow networks or discon-
nection, providing clients with usable forensics and control
for their (increasingly) missing mobile devices.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection

General Terms design, performance, security

Keywords Keypad, auditing, file system, theft-prone

1. Introduction

Laptops, USB memory sticks, and other mobile comput-
ing devices greatly facilitate on-the-go productivity and the
transport, storage, sharing, and mobile use of information.
Unfortunately, their mobile nature and small form factors
also make them highly susceptible to loss or theft. As ex-
ample statistics, one in ten laptops is lost or stolen within
a year of purchase [Nusca 2009], 600,000 laptops are lost

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10-13, 2011, Salzburg, Austria.

Copyright © 2011 ACM 978-1-4503-0634-8/11/04. .. $10.00

annually in U.S. airports alone [Ponemon Institute 2008],
and dry cleaners in the U.K. found over 4,000 USB sticks
in pockets in 2009 [Sorrel 2010]. The loss of such devices
is most concerning for organizations and individuals storing
confidential information, such as medical records, social se-
curity numbers (SSNs), and banking information.

Conventional wisdom suggests that standard encryption
systems, such as BitLocker, PGP Whole Disk Encryption,
and TrueCrypt, can protect confidential information. Un-
fortunately, encryption alone is sometimes insufficient to
meet users’ needs, for two reasons. First, traditional en-
cryption systems can and do fail in the world of real users.
As described in the seminal paper “Why Johnny Can’t En-
crypt” [Whitten 1999], security and usability are often at
odds. Users find it difficult to create, remember, and manage
passphrases or keys. As an example, a password-protected
USB stick containing private medical information about
prison inmates was lost along with a sticky note revealing
its password [Savage 2009]. Encrypted file systems often
rely on a locally stored key that is protected by a user’s
passphrase. User passphrases are known to be insecure; a
recent study of consumer Web passwords found the most
common one to be “123456” [Imperva 2010]. Finally, in the
hands of a motivated data thief, devices are open to physical
attacks on memory or cold-boot attacks [Halderman 2008]
to retrieve passphrases or keys. Even physical attacks on
TPMs and “tamper-resistant” hardware are possible [Ander-
son 1996, Robertson 2010].

Second, when encryption fails, it fails silently; an attacker
might circumvent the encryption without the data owner ever
learning of the access. The use of conventional encryption
can therefore lead mobile device owners into a false sense
of protection. For example, a hospital losing a laptop with
encrypted patient information might not notify patients of
its loss, even if the party finding the device has circumvented
the encryption and accessed that information.

This paper presents the design, implementation, and eval-
uation of Keypad, a file system for loss- and theft-prone
mobile devices that addresses these concerns. The principal
goal of Keypad is to provide explicit evidence that protected
data in a lost device either has or has not been exposed af-
ter loss. Specifically, someone who obtains a lost or stolen
Keypad device cannot read or write files on the device with-

out triggering the creation of access log entries on a remote
server. This property holds even if the person finding the de-
vice also finds a note with the device’s encryption password.

Keypad’s forensic logs are detailed and fine grained. For
example, a curious individual who finds a laptop at the cof-
fee shop and seeks to learn its owner might register audit
records for files in the home directory, but not for unaccessed
confidential medical records also stored on the device. How-
ever, the professional data thief will register accesses to all
of the specific confidential medical files that they view. Fur-
thermore, Keypad lets device owners disable access to files
on the mobile devices once they realize their devices have
been lost or stolen, even if the devices have no network con-
nectivity, such as USB memory sticks (in contrast to systems
like Apple’s MobileMe).

Keypad’s basic technique is simple yet powerful: it tightly
entangles the process of file access with logging on a remote
auditing server. To do this, Keypad encrypts protected files
with file-specific keys whose corresponding decryption keys
are located on the server. Users never learn Keypad’s de-
cryption keys and thus they cannot choose weak passwords
or accidentally reveal them; it is therefore computationally
infeasible for an attacker to decrypt a file without leaving ev-
idence in the log. When a file operation is invoked, Keypad
logs the file operation remotely, temporarily downloads the
key to access the file, and securely erases it shortly thereafter.
Keypad is implemented on top of a traditional encrypted file
system; obviously users should choose strong passwords (or
use secure tokens, etc.) for that underlying file system, but
Keypad provides a robust forensic trail of files accessed even
if users choose weak passwords or the traditional system’s
keys are otherwise compromised.

While conceptually simple, making this vision practical
presents significant technical challenges and difficult trade-
offs. For example, neither the user nor Keypad can pre-
dict when a device will be lost or stolen. As a result, the
system must provide both an accurate fine-grained forensic
record, which is critical after loss, and acceptable perfor-
mance, which is critical prior to loss.

The tension between performance and forensics is per-
vasive. As an example, consider the creation of a file. For
forensic purposes, a naive Keypad architecture might first
pre-register newly created files and their corresponding keys
with the remote server prior to writing any new data to those
files. However, pre-registration would incur at least one full
network round-trip, which could be problematic for some
workloads over slow mobile networks, such as 3G or 4G.
Delaying the registration is an obvious optimization, yet do-
ing so would leave a loophole that a device thief could ex-
ploit to access files without triggering a log entry in the re-
mote server. Overall, our experience demonstrates that we
can achieve both forensic fidelity and acceptable perfor-
mance by combining conventional systems techniques with

techniques from cryptography, including identity-based en-
cryption [Boneh 2001, Shamir 1985].

We begin with a description of Keypad’s motivation and
goals in the following section. Keypad’s architecture is pre-
sented in Section 3 and its implementation in Section 4. Sec-
tion 5 provides a detailed evaluation of our prototype and
Section 6 discusses its security. Section 7 reviews related
work and we conclude in Section 8.

2. Motivation and Goals

Keypad is designed to increase assurances offered to owners
of lost or stolen mobile devices. The mobile devices might
have computational capabilities (e.g., laptops and phones) or
might be simple storage devices (e.g., USB sticks). We view
Keypad as particularly valuable to users storing personal or
corporate documents, banking information, SSNs, medical
records, and other highly sensitive data.

Examples. We provide two brief motivating examples. Al-
ice is a businesswoman who carries a corporate laptop that
stores documents containing trade secrets. Alice’s IT depart-
ment installs Keypad on the laptop, configuring it to track all
accesses to files in her “corporate documents” folder. After
returning to her hotel from a two-hour dinner, Alice notices
that her laptop is missing. She immediately reports the loss
to her IT department, which disables any future access to
files in the corporate documents folder. The IT department
also produces an audit log of all files accessed within the
two-hour window since she last controlled her laptop, con-
firming that no sensitive files were accessed.

As a second example, at tax preparation time, Bob scans
all of his tax documents, places them on a USB stick, en-
crypts it with a password, and physically hands the stick and
password to his accountant. A few weeks later, Bob can no
longer find his thumb drive and can’t remember whether his
accountant kept it or whether he lost it in the intervening
weeks. Fortunately, Bob’s stick was protected with Keypad
and Bob uses a Web service provided by his drive manufac-
turer to view an audit log of all accesses to the drive. He sees
that there were many accesses to his tax files over the pre-
vious week and he learns the IP addresses from which those
accesses were made. Bob therefore places fraud alerts on his
financial accounts and notifies the appropriate authorities.

In these scenarios, users benefit from additional advan-
tages that Keypad has over traditional encrypted file systems.
First, Keypad provides highly accurate, remotely readable
forensic records of which files were accessed post-loss. If a
file does not appear in those records, that suggests that no
one accessed the file after device loss; if a file does appear
in those records, this suggests that data was accessed and the
owner should take appropriate mitigating actions. Second,
by preventing key access, Keypad can prevent adversaries
from accessing protected files post-loss, even in the absence
of network connectivity, e.g., for a disconnected USB stick
or an extracted laptop hard drive.

use period exposure period destructed FS

3 [
v . time
TlOSS Tnolice
Fine-grained, Remote control
robust auditing

Performance
Transparency

Figure 1. Timeline of theft/loss. This timeline shows the two
critical events during the lifetime of a device: the device loss and
the user noticing that the device has been lost. For each period, we
enumerate the Keypad properties that matter in that period.

Goals. Figure 1 shows a high-level timeline of three periods
in the life of a lost or stolen device, along with the properties
the user requires during each. First is the normal use period
during which the user has control of her device. The user
loses control of the device at T},s5; however, the user may
not know exactly when this occurs, so she must consider
Ti0ss to be the last point at which she remembers having
control. T}, o¢;ce 18 the time at which the user realizes that she
has lost her device, at which point she should take action. In
our Alice scenario, the exposure period (1,55 t0 Thotice) 1S
the full two-hour dinner window.

Our primary Keypad goal is to provide strong audit secu-
rity. If an adversary gains control of a device and accesses
a Keypad-protected file, at least one audit log entry should
be produced on a remote audit server. Further, the adversary
cannot tamper with the contents of the audit log or otherwise
make it unavailable to the victim. Specifically, our goals are:

® Robust auditing semantics: Keypad must provide ro-
bust semantics by preventing unrecorded file accesses.
To achieve this, the remote auditing server must observe
data and metadata operations performed on the client.

® Performance: File access latency and throughput should
be acceptable for Keypad-protected data. We mainly
target office productivity and mobile workloads, rather
than server- or engineering-oriented workloads. We also
assume multiple network environments: at the office
(LANS), at home (broadband), and on the road (3G or
4G). We seek minimal overhead at work or home, but
will tolerate some increased latency in challenging mo-
bile environments in exchange for Keypad’s properties.

e Fine granularity: Keypad should produce detailed access
logs of read and write accesses to individual Keypad-
protected files. Administrators can control the granular-
ity and coverage of these logs; e.g., configuring Keypad
to produce audit logs for an entire file system or only for
specific files identified as sensitive.

e User transparency: We assume that users are not techni-
cally sophisticated; therefore, Keypad’s operation should
be largely transparent to them and its auditing security
should be independent of users’ technical competence.

® Remote access control: The victim should be able to
disable access to protected files after device loss, even if

the device has no network or computational capabilities.
If an adversary has not yet accessed a protected file, then
disabling access prevents any access to the file in the
future. If an adversary has already accessed the file, we
provide no guarantees about repeat accesses.

These goals mean that device owners will have accurate
information about which files have been accessed post-loss.
While we will consider optimizations that may introduce ex-
tra entries in the audit log, maintaining a zero false-negative
rate is critical. If a file does not appear in the audit log, then
one can confidently say that the file was not accessed. In ad-
dition, these audit goals must hold after 7}, even if an at-
tacker uses his own software and hardware (and not Keypad)
to access the files stored on the device.

We also have several non-goals for Keypad. First, we
do not attempt to ensure the device’s physical or software
integrity after theft/loss. If a user recovers a lost device,
he should assume that it has been tampered with, and in-
spect and reinstall the device from scratch to ensure that
no keyloggers or malware have been installed. Second,
Keypad deals with device theft/loss that is detectable by a
user, and not with surreptitious attacks where an adversary
might undetectedly access data on a user’s device while he
is away. This excludes evil-maid attacks from our threat
model [Rutkowska 2009].

Third, Keypad ensures auditability and remote control
solely at the file system interface level and below (e.g.,
the buffer cache). Auditability and control of clear-text data
cached in applications’ memories is out of Keypad’s scope.
Fourth, we do not seek to improve the confidentiality of
protected files over traditional encryption. Instead, Keypad
provides a secure audit log of file accesses if that traditional
encryption fails. Finally, we do not guarantee that users
can always access Keypad-protected files in the absence of
network connectivity (which we consider increasingly rare,
given ubiquitous cellular and WiFi networks). However, we
do introduce a “paired-device” mechanism to mitigate the
impact of disconnection while still maintaining auditability.

3. Keypad Design

Keypad augments encrypted file systems with two proper-
ties: auditability and remote data control. The basic idea is
simple yet powerful. Keypad: (1) encrypts each file with its
own symmetric key, (2) stores all keys on a remote audit
service, (3) downloads the key for a file each time it is ac-
cessed, and (4) destroys the key immediately after use. This
approach supports our auditability and remote data control
goals. By configuring the audit service to log all storage ac-
cesses, we obtain fine-grained auditability; by disabling all
keys associated with a stolen device on the service, we pre-
vent further data access.

Despite its simplicity, designing a practical file system
to achieve our goals poses three challenges. First is perfor-
mance: each file access requires a blocking network request,

client device audit services
(trusted prior to loss) (trusted)
application key service
FS operations D, K,
Keypad FS
accegs log

ID,
encrypted metadata service
file F (K¢) —
ID.| M,
file metadata
(e.g., file path)

Figure 2. Keypad Architecture. Each file is encrypted with its
own random symmetric key. Keys are stored remotely on a key
service. To enable forensics, a (separate) metadata service stores
file metadata.

which could harm application performance and responsive-
ness over high latency cellular networks. Second is discon-
nection: involving the network on all file accesses prohibits
file use during network unavailability. While we treat this
as an exception, we still wish to support disconnected opera-
tion. Third is metadata: an auditor requires user-friendly, up-
to-date metadata for each key to interpret access logs appro-
priately. As will be shown, efficiently maintaining metadata
is complex, but possible. This section shows how Keypad’s
design addresses these three challenges.

3.1 Keypad Overview

Figure 2 shows Keypad’s architecture. On the client device,
each file F' has a unique identifier (called the audit ID —
IDp) stored in its header, and the file’s data is encrypted
with a unique symmetric key, Kr. A remote key service
maintains the mappings between audit IDs and keys. When
an application wants to read or write a file, Keypad looks up
the file’s audit ID in its header and requests the associated
key from the service. Before responding to the request, the
service durably logs the requested ID and a timestamp. This
process ensures that after 7,,¢,ce, the user will be able to
identify all compromised audit IDs for which there is a log
entry after Tj,ss.

In addition to the key service, Keypad contains a meta-
data service that maintains information needed by users to
interpret the logs. The information (called file metadata)
includes a file’s path, the process that created it, and the
file’s extended attributes. The metadata and key services ful-
fill conceptually independent functions; they could be run
by a single provider or by distinct providers. Using distinct
providers helps to mitigate privacy concerns that could arise
if a single party tracked all file access information. The key
service sees only accesses to opaque IDs and keys, while the
metadata service learns the file system’s structure, but not
the access patterns. Thus, privacy-concerned users can avoid
exposing full audit information to any audit service by using
different key and metadata providers.

To meet our goal of robust auditing semantics, Keypad
must carefully manage file metadata. For example, when an
application creates a new file with name G, Keypad: (1)
locally allocates an I D¢ for the file, (2) sends a request
to the key service to create a new key K and bind it to
IDg, and (3) sends a request to the metadata service to
register the name G with I D¢. While steps 2 and 3 can
occur concurrently, Keypad must confirm that both requests
complete before it allows access to the new file. This ensures
that file metadata is associated with keys prior to Tj,ss,
so that any compromised keys can be correlated with their
metadata after 77, ,¢;ce.

Similarly, during a file’s lifetime, Keypad must keep
the service’s metadata current to ensure that a user will
have fresh information in case of compromise. For exam-
ple, whenever an application renames a file, Keypad sends
a metadata-update request to the metadata service. Keypad
must ensure that a thief cannot overwrite the user’s meta-
data with bogus information after theft. For this reason, we
implement the metadata store as an append-only log.

3.2 Semantics and Challenges

Keypad provides users with strong auditing semantics at
audit time (i.e., post 1j,s5). We formulate an ideal invariant
describing these semantics as follows:

For any file F with identifier 1D, that was accessed after T___
the following properties hold:
and

loss’

(1) the key service shows an ID_log entry after T

(2) the metadata service shows all metadata updates that
occurred on ID_before T,

ss*

For (2), the metadata server must contain the latest file
metadata (such as file pathname or other attributes) that the
user assigned to the file. For example, suppose a user has
downloaded a blank IRS tax forminto /tmp/irs_form.pdf,
renamed it as /home/prepared.taxes_2011.pdf, and
filled it with sensitive information. Then, at forensics time,
the user will need to have this latest path available on the
service side to interpret a compromise of the taxes file accu-
rately. Hence, maintaining up-to-date service-side metadata
is vital to enable meaningful forensics.

In theory, we could achieve semantics arbitrarily close to
this ideal invariant. If Keypad downloaded a file’s key every
time a block in the file is accessed and erased the key from
memory immediately after using it, then we would obtain
the first part of the invariant. Similarly, if Keypad waited for
every metadata update to be acknowledged by the metadata
service before completing that operation on the local disk,
then we would obtain the second part.

In practice, however, achieving the ideal invariant is chal-
lenging at best. If Keypad must wait a full network round-
trip for every block access and for every metadata opera-
tion (e.g., rename), then the system would be unacceptably
slow over high-latency networks. Similarly, disconnected ac-

cess would be impossible. The remainder of this section de-
scribes a combination of new techniques and re-purposed
traditional mechanisms that help overcome these challenges.
While each technique slightly weakens the invariant, we be-
lieve that the semantics remain clear and easy to grasp, and
that we achieve our goals in nearly all realistic cases.

3.3 Encryption Key Caching and Prefetching

Many of Keypad’s critical-path operations are remote key-
fetching requests, e.g., issued whenever an application per-
forms a file read or write. The number of such key re-
quests can be minimized using standard OS mechanisms,
such as caching and prefetching. For instance, instead of
erasing a key immediately after use, Keypad can cache it
locally. Similarly, on access to a file F', Keypad can prefetch
keys for other related files, such as those in the same direc-
tory. Key caching and prefetching remove key retrieval from
the critical path of many file accesses, dramatically improv-
ing performance (Section 5).

While caching and prefetching are well understood, they
have non-standard implications in our system. First, these
techniques cause keys to accumulate in the device’s memory,
affecting what users can deduce from the audit log of a lost
device. Keys that are cached at time 7;,4, are susceptible to
compromise: if an adversary can extract them from memory
he can permanently remember those keys and bypass audit
records for those files. The victim must thus make the worst-
case assumption that all keys cached at 7,55 are compro-
mised. Second, key prefetching creates false positives in the
audit log: some prefetched keys may not be used, although
records for those keys will appear in the logs.

Keypad must therefore use caching and prefetching care-
fully to ensure good auditing semantics. For caching, we
impose short lifetimes (T¢;,) on keys and securely erase
them at expiration. This bounds key accumulation in mem-
ory; the shorter the T¢,),, the fewer keys will be exposed
after T},ss. Experimentally, we find that key expirations as
short as 100 seconds reap most of the performance benefit
of caching, while exposing relatively few keys in memory at
a given time. For prefetching, we designed a simple scheme
to prefetch keys only when a file-scanning workload is de-
tected (e.g., recursive file search or file hierarchy copying).
This benefits file-system-heavy workloads where prefetch-
ing is the most useful, while maintaining high auditing preci-
sion for light workloads (e.g., interacting with a document).
We discuss further prefetching alternatives in Section 4.

Key caching and prefetching alter Keypad’s auditing se-
mantics in a clear way: a user must now consider as compro-
mised all files with audit records after 7},5; — 1%z Doing
so ensures that the user will never experience false negatives.
Hence, these techniques alter the invariant introduced in Sec-
tion 3.1 in the following way: key and metadata service in-
formation must be present for any file £’ that was accessed
after T},ss — Teqp. In Section 5.2 we quantify the effects of
caching and prefetching on auditing.

3.4 Identity-Based Encryption for Metadata Updates

Metadata-update file system operations (such as file create
and rename) account for a significant portion of file system
operations in many workloads. For example, an OpenOffice
file save invokes 11 file system operations, of which 7 are
metadata operations that create and then rename temporary
files. This large number of metadata operations would result
in poor performance over slow networks if Keypad were
to wait for an acknowledgement from the metadata service
upon every metadata update before committing the update to
disk, as required by our ideal auditing semantics. Figure 3a
shows this scenario.

Overlapping local metadata updates with remote meta-
data service updates seems like a tempting optimization,
however, it opens Keypad to possible attacks and frustrates
our semantics. For example, consider a user who creates a
new file called /home/taxes_2011, writes sensitive tax in-
formation inside, and closes the file and editing application.
Suppose that due to network failures the create request does
not reach the metadata service and therefore the service does
not learn the new file’s name. If a thief steals the device and
reads the tax file ten minutes later, the access will produce
an audit trail on the key service; however, no file metadata
will be available for the user to interpret the log. Worse, the
thief could block Keypad’s metadata retries and send a bo-
gus request to the service, e.g., declaring the new file’s path
as /tmp/download to mislead the user.

To respond to this challenge, Keypad leverages identity-
based encryption (IBE) [Boneh 2001, Shamir 1985] in a way
that both eliminates the network from the critical path of
metadata updates and retains its strong auditing semantics.
IBE allows a client to perform public-key encryption using
any key string it chooses as the public key. A server called
a private key generator (PKG) is required to generate the
decryption key for the arbitrary public key. Most importantly
for our use, the PKG need not know the public key string in
advance, but the public key string must be provided to the
PKG to learn the decryption key.

We modified Keypad to use IBE as follows. First, we add
a level of indirection for file encryption keys. A file F’s
content is encrypted using a locally-generated random data
key (denoted K 1’?) stored in the file’s header. The data key is
itself encrypted under the remote key, which in turn is stored
on the key server. Section 4 provides more detail.

Second, Keypad’s metadata service acts as a PKG, as
shown in Figure 3b. When an application invokes a metadata
operation (such as rename) for a file F', Keypad “locks” its
encrypted data key K IQ in the on-disk file header by encrypt-
ing it with IBE, using the new file’s pathname as the public
key string. While the metadata request is in flight, reads and
writes can proceed as long as a copy of the file’s cleartext
data key K FD is cached in memory. Because files with meta-
data updates in flight are vulnerable to attacks, we reduce the
key expiration time for such files to the bare minimum nec-

Keypad meta('iata
service
call from app: rename (F, G) =
IDg, G

NetworkRTTs ‘% save ID;, G
»

OK
rename F to G on disk +
return from rename =+
call from app: read(G) +
return from read =+
time time
(a) Without IBE

metadata

Keypad
P service

call from app: rename (F, G)
encrypt K:° on disk with IBE
rename F to G on disk
return from rename

call from app: read G

return from read

¢ save ID;, G

= generate IBE
private key for
<ID., G> (K;®F)

Network RTTs

IBE
KG

decrypt K:? on disk with IBE
(in background thread) time time

(b) With IBE

Figure 3. Timelines for handling metadata-update operations without IBE (a) and with IBE (b). The application is assumed to issue
a rename (F, G) followed by a read (G). Assuming that a copy of F’s decryption key is cached in memory, IBE allows overlap of
accesses to F' with the metadata service request until the cached key times out (1 second in our system).

client device audit services
(trusted prior to loss) (trusted)

application
FS operations

Keypad FS keys,
metadata

key service

acce&s log

IDg bluetooth | \?g?’eu o i
encrypted ‘?ob;;pgﬁres metadata service
file F (Kg) ’s) S| —r

F| F
 ——
== file metadata
file metadata access log (e.q., file path)

Figure 4. Paired-device architecture. By pairing a laptop with
a mobile phone, Keypad supports disconnected operation and may
even improve performance.

essary to hide network latencies on cellular networks. For
example, our prototype expires cached keys with in-flight
metadata updates in one second, minimizing attack oppor-
tunity. After the cached key times out, the file is essentially
“locked” on disk by the IBE encryption, preventing subse-
quent file accesses until the metadata service confirms its
success. On confirmation, the metadata service returns the
IBE private key, allowing Keypad to “unlock” the file.

Suppose an attack or network failure prevents the service
from registering the new metadata and subsequently the de-
vice is stolen. In the (extremely likely) case that the theft
occurred more than one second after the user’s rename re-
quest, the file’s cached data key will have expired and the
thief will need to obtain the IBE private key in order to un-
lock the file for access. As a result, the thief is forced to
supply the correct file pathname to the metadata service if
he desires to read the file; lying or avoiding the metadata
update will prevent him from gaining access. Therefore, the
thief cannot access the file without causing an audit record
associated with correct and up-to-date metadata to be logged
on the corresponding audit services.

3.5 Using Paired Devices for Disconnected Access

Although disconnected operations are assumed to be the ex-
ception rather than the rule, Keypad must still support them.

One option is to cache keys for an extended period of time
and accumulate metadata registrations locally. However, this
forces the user to give up auditability for the disconnected
duration, which can be dangerous. Further, caching is not
applicable to storage-only devices like USB sticks. To ad-
dress this issue, we developed a paired-device extension to
Keypad that supports disconnected operations without sacri-
ficing auditability semantics.

Many of today’s users carry multiple devices when they
travel, such as a laptop as well as a smart phone or a tablet.
These devices support short-range, low-latency networks,
such as Bluetooth. The paired-device architecture, shown in
Figure 4, uses a cell phone as a transparent extension of the
Keypad key and metadata services. Keypad on the laptop is
configured as usual, using strict caching, prefetching, and
metadata registration policies to ensure fine-grained audit-
ing. The phone is configured to hoard [Kistler 1991] any re-
cently used keys, cache them until connectivity is restored,
log any accesses and metadata updates to the local disk, and
upload the logs when connectivity returns. If only the laptop
is lost, the phone is used along with the audit service logs to
provide a full audit trail. If the phone is stolen along with the
laptop, then the audit service will list more files as exposed
than if the laptop were stolen alone.

In addition to supporting (increasingly rare) disconnected
cases, the paired-device architecture has another advantage:
it can improve performance over slow mobile networks with-
out sacrificing auditing. Because the laptop—phone link is
relatively efficient, the paired phone can improve laptop per-
formance by acting as a cache for it. Here the phone is con-
figured to perform aggressive directory-level key prefetching
and caching. On a key miss, the laptop contacts the phone
via bluetooth and the phone returns the key, if available; oth-
erwise the phone fetches the missed key and other related
keys from the key service and returns the key to Keypad.
Section 5 evaluates the performance improvement for this
solution. As before, auditing properties are preserved if only

the laptop is stolen. If both devices are stolen, then auditing
is at a directory-level granularity.

3.6 Partial Coverage

Not all files necessarily require audit log entries. For exam-
ple, as a trivial optimization we could exclude non-sensitive
files such as binaries, libraries, and configuration files from
Keypad’s audited protection domain. In this scenario pro-
tected files are encrypted locally and their keys and meta-
data are stored remotely; unprotected files are (optionally)
encrypted locally, but their encryption keys are derived from
the user’s login credentials.

The benefits of this optimization are obvious: Keypad’s
performance and availability costs are only incurred for pro-
tected files. There is also a risk: if a sensitive file is acciden-
tally placed in an untracked file or directory, the audit logs
will not reveal accesses to that sensitive data. One reasonable
protection policy is to track accesses to any file in crucial di-
rectories, such as the user’s home and temporary directory
(e.g., /home and /tmp on Linux).

3.7 Summary

Keypad provides strong guarantees to its users. If a protected
file is accessed, then at least one record related to that access
will appear in the remote audit logs, and up-to-date metadata
about the file will be available online. As we have shown,
one challenge Keypad faces is preserving this strong prop-
erty while overcoming the performance impact of commu-
nicating with remote services in the critical path of file ac-
cesses. We introduced a series of novel techniques to meet
this challenge. Though some of these techniques have an im-
pact on the quality of the information in the audit logs, we
show in Section 5.2 that this impact is small.

4. Implementation

We implemented a Keypad prototype including the client-
side Keypad filesystem, the key service, and the metadata
service as shown in Figure 2. All components are coded in
C++ and communicate using encrypted XML-RPC with per-
sistent connections. Our client-side Keypad file system is an
extension of EncFS [EncFS 2008], an open-source block-
level encrypted file system based on FUSE [Fuse 2004].
EncFS encrypts all files, directories, and names under a sin-
gle volume key, which is stored on disk encrypted under the
user’s password. Keypad extends EncFS in two ways. First,
we modified EncFS to encrypt each file with its own per-file
key. The single volume key is still used, however, to pro-
tect file headers and the file system’s namespace, e.g., file
and directory names. Second, Keypad stores all file keys on
a remote key server and maintains up-to-date metadata on a
metadata server. To support forensic analysis we built a sim-
ple Python tool; given a Tj,ss timestamp and an expiration
time, T, the tool reconstructs a full-fidelity audit report of
all accesses after Tj,55 — Teyp, including full path names and
access timestamps.

D¢ IDr

IBE Enc D
EncKéKE) - D(KR(KF)

+IDg F

Enc_(data)

EncKE(data) ko

File Content |File Header
File Content |File Header

(a) Keypad File. (b) IBE-Locked File.

Figure 5. Keypad File Formats. Keypad on-disk file structure
for the normal case (a) and the IBE-locked case (b).

Keypad File Structure. Figure 5(a) shows the internal
structure of a Keypad file F', which consists of two regions:
the file’s header and its content. The file’s header is fixed
size and is encrypted using EncFS’ volume key. For the
file’s content, our implementation adds a level of indirec-
tion for encryption keys to support techniques such as IBE
efficiently. Specifically, file F’s content is encrypted using
a 256-bit random data key, denoted K ?. The data key is
stored in the file’s header encrypted under the remote key,
denoted K £. The remote key is stored on the key server and
is identified by the file’s audit ID (/Dp), which is a ran-
domly generated 192-bit integer that is stored in the file’s
header along with the encrypted data key. This internal file
structure is transparent to applications, which see only the
decrypted contents of a file.

FS Operations. Keypad intercepts and alters two types of
EncFS operations: file-content operations (read, write)
and metadata-update operations (create, rename for files
or directories). When an application accesses file content,
Keypad: (1) looks up the file’s audit ID from its header, (2)
retrieves the remote key K L either from the local cache or
the key service, (3) decrypts the data key K 11?) using K 1{?, @)
caches KX temporarily, and (5) decrypts/encrypts the data
using K&

When an application creates or updates file metadata,
Keypad: (1) locks the data key using IBE, if enabled, and
(2) sends the new metadata to the metadata service. The
metadata is the file’s path reported as a tuple of the form
directoryID/filename. The names of Keypad directo-
ries are also kept current on the metadata service. While our
current prototype applies IBE for file metadata update op-
erations (e.g., file create, rename), it does not apply it
to directory metadata operations (e.g., mkdir or directory
rename), although this should be possible to add.

Key Expiration. Keypad caches keys for a limited time to
improve performance. A background thread purges expired
keys from the cache. If a key has been reused during its
expiration period, the thread requests the key from the key
service again, causing an audit record to be appended to the
access log for that audit ID. If a response arrives before the
key expires, the key’s expiration time is updated in the cache,
otherwise the key is removed. As a result, absent network
failures, keys in Keypad never expire while in use. This

ensures that long-term file accesses, such as playing a movie,
will not exhibit hiccups due to remote-key fetching.

Key Prefetching. Key prefetching attempts to anticipate fu-
ture file accesses by requesting file keys before the files are
accessed. For our prototype, we sought a simple policy that
would have both reasonable performance and little impact
on auditability. We have experimented with two policies: (1)
a random-prefetch scheme that prefetches random keys from
the local directory upon every key-cache miss and (2) a full-
directory-prefetch scheme that prefetches all keys in a di-
rectory when it detects that the directory is being scanned
by an application. Our experiments indicated that the latter
policy provided equally good performance, while incurring
fewer false positives in the audit logs. Hence, our Keypad
prototype uses it by default. The intuition behind our full-
directory prefetch design is to avoid producing false posi-
tives for targeted workloads (such as interacting with a docu-
ment, viewing a video, etc.) and to improve performance for
scanning workloads (such as grepping through the files in a
directory or copying a directory). Our full-directory-prefetch
scheme avoids recursive prefetches to ensure that any false
positives are triggered by real accesses to (related) files in
the same directory. While other more effective prefetching
policies may exist, our results show that our full-directory-
prefetch policy, combined with our caching policies, reduce
the number of blocking key requests to a point where the
performance bottleneck shifts from blocking key requests to
metadata requests (see Section 5).

IBE. To avoid blocking for metadata-update requests,
our prototype implements IBE-based metadata registration,
using an open-source IBE package [Boneh 2002]. On a
metadata-update operation, Keypad locks the file until the
metadata service confirms the receipt of the new file path;
however, file operations can proceed for a one-second win-
dow, as previously described, to absorb the registration la-
tency. Figure 5(b) shows the structure of an IBE-locked file.
Its encrypted data key is further encrypted using IBE under
a public key consisting of the file’s path (directoryID/
filename) and the audit ID (I D). Embedding I D into
the public key strongly binds I Dr and the path together
at the metadata server. Handling updates for other types of
file metadata functions (such as set fattr) works similarly,
although our current prototype only supports pathnames as
metadata.

Android-Based Paired-Device Prototype. We implemented
a prototype of the paired-device architecture (Figure 4) using
the Google Nexus One phone. A simple daemon (431 lines
of Python) on the phone accepts key requests from the laptop
over Bluetooth, saves accesses to a local database, responds
to the laptop, and uploads access and metadata information
to Keypad servers in bulk over wireless.

5. Evaluation

This section quantifies Keypad’s performance and auditing
quality. Keypad must be fast enough to preserve the usabil-
ity of desktop and mobile applications, even in the face of
adverse network conditions (e.g., 3G), while providing high
quality auditing.

For our experiments, we used an eight-core 2GHz x86
machine running Linux 2.6.31 as our client. Our key service
and name service daemons ran on 8 core 2.6GHz servers
with 24GB of RAM, connected via gigabit Ethernet. We
used Linux’s traffic control utility to emulate different net-
work latencies. We did not emulate different bandwidth
constraints, however, Keypad’s bandwidth requirements are
very low. During a 12-day period in which one of our au-
thors used Keypad continuously, average Keypad bandwidth
was under 5 kb/s, with occasional spikes up to 45 kb/s.

Throughout the evaluation, we emulate the following
RTTs for various networks: 0.1ms RTT for a LAN, 2ms
RTT for a wireless LAN (WLAN), 25ms RTT for broad-
band, 125ms RTT for a DSL network, and 300ms RTT for a
3G cellular network. To illustrate network latency effects on
Keypad performance, we often use examples from extreme
network conditions, such as fast LANs and slow 3G net-
works, even though popular mobile connections today rely
on WLAN and 4G.

5.1 Performance

To understand where the time goes for Keypad operations,
we microbenchmarked file content (read and write) and
metadata (create, rename, and mkdi r) operations. Our
measurements included client, server, and network latencies,
as well as latency contributions for EncFS and Keypad.

Figure 6(a) shows the latency of file read and write op-
erations for two cases: key-cache misses, which must fetch
the key from the the server, and key-cache hits, which use a
locally cached key. For each case we show data for two ex-
treme networks: a fast 0.1ms-RTT LAN and a slow 300ms-
RTT 3G network. The results show that misses are expensive
on both networks, but for different reasons. On a LAN, the
network is insignificant, but Keypad adds to the base EncFS
time due to the XML-RPC marshalling overhead. On 3G,
network latency dominates. When the key-cache hits, both
the network and marshalling costs are eliminated; a file read
with a cached key is only 0.01ms slower than the base EncFS
read time of 0.337ms. This shows the importance of key
caching to avoid misses, which we accomplish by carefully
choosing our expiration and prefetching policies.

Figure 6(b) shows the latency of file metadata update op-
erations. For create and rename, we show latency with
and without IBE; mkdir is shown only without IBE, since
it does not benefit from this optimization in our prototype.
Without IBE, metadata update latency is driven primarily by
network RTT: file creation takes 1.618ms on a LAN, and
302ms over 3G. With IBE, metadata update latency is inde-

1000
& Network
g 100 OKeyPad
' BENcFS
) 300
g
9 10
o
]
g 11 1322 ——| 1302 ————
& 77 0.007
77 0-001 7 7
0.505 0.587 I I0.453
o 9 Yoss 7
LAN ‘ 3G LAN | 3G ‘ LAN ‘ 3G ‘ LAN | 3G
Read, Read, Write, Write,
key cache miss | key cache hit | key cache miss key cache hi
(a) FS Content Operations: read, write.
1000
@ Network
—_ OKeyPad
g 100 7 @ENCFS
' S 300 300
K}
S 10 —
5 25.299 25.299
k)
> 1 0.752 1.0711 1.526
§ ﬁ %1 012 -
= 0.848 ? 7k 0.445 0.5 0.473
0.1
LAN‘ 3G ‘ LAN‘ 3G ‘ LAN‘ 3G ‘ LAN‘ 3G ‘ LAN‘ 3G
Create Create Rename Rename Mkdir
without IBE with IBE without IBE with IBE

(b) FS Metadata Operations: create, rename, mkdir.

Figure 6. File Operation Latency. The latency of Keypad (a)
content and (b) metadata-update operations. For each, we show
the time spent in EncFS code, Keypad client and server code, and
on the network. Labels on the graph show the latency for each
component in the 3G 300ms RTT case. Results are averaged over
10 trials with a warm disk buffer cache.

pendent of network delay and is dominated by the compu-
tational cost of IBE itself. The figure shows that IBE meets
its goal of improving performance of metadata updates over
3G. While IBE would add overhead for a LAN, it is unnec-
essary and would be disabled in the LAN environment.

5.1.1 Optimizations

We now demonstrate the effectiveness of our optimizations
on a challenging workload: Apache compilation. While this
workload is not characteristic of mobile devices, its com-
plex nature make it ideal for evaluating the impact of our
optimizations. In Section 5.1.2, we extend our evaluation to
more typical workloads for mobile devices. As baselines,
the Apache compilation takes 112s using the unmodified
EncFS encrypted file system (i.e., with encryption but with-
out auditing) and 63s on ext3 (i.e., without encryption or
auditing). Because Keypad enhances EncFS, the fair base-
line comparison for Keypad is EncFS, and not ext 3.

In what follows, we inspect the effect of optimizations
as we enable one optimization after the other. We begin

5000
4500
4000
3500
3000

—3G (RTT=300ms)
DSL (RTT=125ms)

-©-Broadband (RTT=25ms)

-&-LAN (RTT=0.1ms)

Apache Compile Time (s)

2500
2000
1500
1000
500 -
0 R
1 10 100 1000

Key Expiration (s)

Figure 7. Effect of Key Expiration Time. This graph shows the
effect of key expiration without any other optimizations enabled. A
100-s key expiration time is nearly optimal, and achieves compila-
tion times of 115s, 153s, 292s, and 551s over a LAN, Broadband,
DSL, and 3G, respectively. For comparison, the Apache compila-
tion takes 112s on the unmodified EncFS and 63s on ext 3.

by showing the effect of purely key caching with no other
optimizations, then we add prefetching, then IBE, and finally
we add the paired-device optimization.

Key Caching and Expiration. Key caching is crucial to
performance. Even a cache with one-second expiration time
has significant impact: 18% improvement on a LAN and
4.9x on 3G, relative to no caching at all. Figure 7 shows ad-
ditional improvements for Apache compilation time as expi-
rations are lengthened beyond one second. No optimizations
other than caching are enabled here. Our results suggest that
short expiration times are sufficient to extract nearly all the
benefits. For LAN, Broadband, or DSL latencies, an expira-
tion of 10s or so is optimal. Over 3G, a 100s key expiration
time achieves all the benefit and provides 8.6x improvement
over 1s (from 79.4 minutes down to 9.2 minutes). In compar-
ison to EncFS, Keypad’s performance degradation for 100s
expiration times is already small over a LAN (5.3% over-
head over EncFS), while for the other network types, further
optimizations are required for performance.

Note that a 100s timeout is extremely small. To benefit
from cached keys, a thief needs to steal the device within 100
seconds of the user’s last access. Even in such cases, the user
will know which files were exposed. We therefore believe
that we can achieve both good performance and accurate
auditing with these parameters.

Directory-Key Prefetching. Key caching alone avoids many
key service requests: of the 75,744 reads and writes in the
Apache compilation, only 486 involve the server when us-
ing a 100s expiration time. Directory-key prefetching avoids
additional server requests. Prefetching a directory key on
the first, third, or tenth miss in a directory results in 101,
249, and 424 key-cache misses, which translates into 63.3%,
24.1%, and 2.4% improvements, respectively, over not using
directory-key prefetching over 3G. We adopted a prefetch-
on-third-miss policy to strike a good balance between per-

m Caching

100

O Caching + prefetching

Total: 90.4%

Caching + prefetching + IBE

90 -
80 4

Total: 74.9%
(from 57s to 14s)

Total: 70.3%
(from 57s to 17s)

Total: 66.5%
(from 14s to 5s)

(305ms to 29ms)

Total: 65.2%
(from 5.5s to 1.9s),

500 A
_. 450 | | —«Keypad without IBE
G .
o 400 - Keypad with IBE
E 350 | | —EncFs
g 300 | | =—Ext3
§ 250 3G
g 200
3 150, >~————% DSL
[}
5 100 LAN WLAN Broadband
8 50
<
0 T T .
0.1 1 10 100
Network RTT (ms)
(a) Effect of IBE.
350
Keypad without phone
@ 300 4 -B-Keypad with phone
Q —
E 250 | EncFS
= ——Ext3
2 200 -
g- Broadband
S 150 — = 5
© DsL 3G
£ b
§ 1OOL AN WLAN
< 50
0 T T .
0.1 1 10 100
Network RTT (ms)

(b) Effect of Device Pairing.

Figure 8. Effect of IBE and Device-pairing Optimizations. (a)
Effect of applying the IBE optimization atop a 100-s key caching
policy and a third-miss prefetching policy; no device pairing is used
here. (b) Effect of applying the device-pairing optimization atop the
optimization setup in (a).

formance and auditing quality (which is evaluated in Sec-
tion 5.2). Over fast networks, such as a LAN and WLAN,
the prefetch-on-third-miss policy coupled with 100-s key
caching results in negligible performance overheads com-
pared to EncFS: 2.8% for LAN and 4.3% for WLAN. Over
slower networks, especially 3G, other smarter prefetching
policies may improve performance by further eliminating
blocking key requests. However, we find that with our sim-
ple prefetching policy, the dominating runtime component
now becomes the blocking metadata requests (932 block-
ing metadata requests compared to the 249 blocking key
requests). We next focus on optimizing metadata requests.

IBE. IBE tolerates the latency of metadata service requests
over slow mobile networks. Figure 8(a) shows the impact of
IBE on Apache compilation as a function of network RTT.
As we see in the figure, IBE provides dramatic improve-
ments on high-latency networks, including 3G- and 4G-class
networks. For example, IBE improves the benchmark’s per-

70 A
60
50 -
40 -
30 A
20 -
10 A
0,

Performance Improvement
Over Unoptimized (%)

Find file in
hierarchy

Thunderbird -
read email

Copy photo
album

OpenOffice
- launch

OpenOffice -
create doc.

Figure 9. Impact of Optimizations on Various Applications.
Impact of three of the optimizations on an emulated 3G network;
labels indicate the total performance improvement when using all
three optimizations over the unoptimized case, as well as the abso-
lute numbers for the unoptimized and optimized.

formance on 3G by 36.9%. The crossover for IBE is around
25ms, i.e., it should be used only for networks with RTTs
over 25ms and disabled otherwise. As mentioned above, for
faster networks, such as LANs or WLAN:Ss, IBE is not even
necessary, as Keypad’s overhead is already negligible after
applying key caching and prefetching.

The Paired Device. Our paired device design is aimed at fa-
cilitating disconnected operation, but it can also provide per-
formance benefits for high-latency network environments.
Figure 8(b) shows the effect on the Apache workload of us-
ing a paired device as a caching proxy for key and metadata
services. Two conclusions can be reached from the figure.
First, performance for disconnected operation over Blue-
tooth should be similar to or better than that of a broadband
connection (the latencies are similar). Second, pairing with
another device is always beneficial for performance over cel-
lular networks, because most operations only traverse the
lower latency Bluetooth link. Obviously the paired device
should not be used if fast networks are available, where Key-
pad is already efficient enough compared to EncFS.

5.1.2 Office-Oriented Workloads

Figure 9 shows the impact of our optimizations on more
typical office-oriented workloads. We add optimizations in-
crementally, reporting additional improvement as more op-
timizations are added. The labels on top of each bar group
show the total improvement with all three optimizations en-
abled. Different workloads benefit the most from different
optimizations, depending primarily on the relative frequency
of those operations. For example, caching and prefetching
are important for a read-intensive workload such as a re-
cursive grep (“Find file in hierarchy”). IBE provides large
improvements for workloads that create files (“OpenOffice
— create doc”). For mixed content/metadata workloads, such
as copying a photo album across directories, all optimiza-
tions are important.

To better understand performance across many applica-
tions, we benchmarked the time to perform a number of pop-

Time (seconds)
Keypad
Application Task EncFS| LAN WLAN | Broadband DSL 3G
(RTT=0.1ms)| (RTT=2ms) | (RTT=25ms) | (RTT=125ms) |(RTT=300ms)
Launch 0.5 0.5]0.5 0.6]0.6 13[1.3 27127 46|46
OpenOffice | New document | 0.0 0.0]0.0 0.0]0.0 0.0]0.0 0.0]0.1 0.0]0.3
Word Save as 1.4 14114 14114 1.5]15 16]1.8 2.0]23
Processor Open 1.7 1.711.7 1.811.8 20]22 2.114.0 21175
Quit 0.1 0.1]0.1 0.1]0.1 0.3|0.4 0.4]0.7 0.4]1.2
Launch 3.7 3.7|3.7 3.8]3.8 44144 6.0]6.0 8.8]18.8
Save a page 0.7 0.7]0.7 0.7]0.7 0.7]0.8 09|15 1.3]2.8
Firefox Load bookmark | 4.5 45|45 45|45 45|46 45]5.0 45|57
Open tab 0.2 0.210.2 0.2/0.2 0.2]0.2 02104 0.210.8
Close tab 0.0 0.0]0.0 0.0]0.0 0.0]0.0 0.0]0.1 0.0]0.3
Launch 1.3 1.3[1.3 13[1.3 1414 2.0]2.0 3.1]3.1
Thunderbird Read email 0.3 04|04 04|04 0.5|0.6 1.0]1.5 19]25
Quit 0.2 0.2]0.2 0.2]2.2 0.2]0.4 0.2]1.3 0.2]2.9
Evince PDF Launch 0.1 0.1]0.1 0.1]0.1 0.1]0.1 0.1]0.1 0.1]04
Viewer [Open document| 0.1 0.1]0.1 0.1]0.1 0.1]0.1 0.2]0.2 0.4]0.4
Quit 0.0 0.0]0.0 0.0]0.0 0.0]0.0 0.0]0.0 0.0]0.0
x|y: x=time with warm key cache

y = time with cold key cache

Table 1. Typical Application Performance Over Keypad. For Keypad, we show both warm and cold key-cache times, separated by a |.

ular tasks using EncFS and Keypad over several emulated
networks (Table 1). For Keypad, we show both warm and
cold key-cache times. A user will likely experience both, but
with well-chosen key expiration times many operations will
be absorbed by a warm cache.

From a user’s perspective, Keypad performs roughly
identically to EncFS over fast networks, such as a LAN
and a wireless LAN. Hence, while at the office, the user
should never feel our file system’s presence, whether its key
cache is warm or cold. With only a few exceptions, the user
should perceive similar application performance over broad-
band with Keypad and the unmodified EncFS. Over mobile
networks, the user may notice some application slowdown,
especially after extended periods of inactivity.

The table and our own experience confirm that applica-
tion launches are particularly expensive over 3G networks,
as they often encounter a cold cache and many file system
interactions. Keypad could optimize launch by profiling ap-
plications and prefetching needed keys; other file systems,
such as NTFS, perform similar special-case optimizations to
speed up application launch.

5.1.3 Comparison to Other File Systems

A networked file system might be an alternative to Keypad;
instead of just storing keys remotely, all file system content
would be remote. NFS provides a reasonably fair compar-
ison to Keypad, since its short-term caching might provide
audit properties comparable to ours. In contrast, for AFS and
Coda, their long-term, coarse granularity caching policies
might interfere more with precise audit semantics.

Figure 10 shows the relative performance of Keypad to
(remote) NFSv3 and (local) EncFS for Apache compilation.
We configured NFS with asynchronous batched writes and
its default caching policy; this improves its performance, but

-
o

Faster than
Keypad

[N

Slower than
Keypad

4
=

Apache Compile Time Ratio
(Keypad Time / Other FS Time)

o
o
=

°
=
BN

10 100

Network RTT (ms)

Figure 10. Comparison to EncFS and NFS.

would have some impact on auditing. Note that for these
experiments, as before, we emulated different network RTTs
but we did not constrain network bandwidth; thus, our results
are upper bounds of NFS performance. Over actual 3G links,
NFS performance would be significantly degraded because
of wireless bandwidth constraints.

With LAN latencies, Keypad’s performance is almost
identical to EncFS with only a 2.78% increase in runtime,
but worse than NFS, with a 75% increase. For reference,
the unmodified EncFS itself is 71% slower compared to
NFS with LAN-like latencies. As RTT grows, NFS degrades
significantly. Even with an RTT of 2ms, NFS is 8.8% slower
than Keypad, while for 3G network latencies of 300ms, NFS
is 36.4x slower than Keypad! In contrast, Keypad is only
2.7x slower than EncFS over a 300ms network.

On large-RTT networks, NFS impacts interactivity. For
example, launching OpenOffice over NFS with 3G latency
takes 50.6 seconds, loading a bookmark in Firefox takes 27.6
seconds, and opening an email in Thunderbird takes 12.5
seconds, which we believe is unacceptable performance for
these user-facing tasks.

350 - ‘
300 |-{ ——Prefetch on 1st miss |-4---------------
250 |- Prefetch on 3rd miss ,,,,,,,,,,,,,,,
200 -1 ~®=No prefgtch ‘

150

Avg. number of files
in memory

1 10 100 1000
Key expiration time (s)

Figure 11. Effect of Optimization on Auditability. The average
number of keys that reside in memory at any point in time, under
various key expiration times and prefetching policies.

5.1.4 Anecdotal Experience

Anecdotally, one co-author used Keypad continuously to
protect his laptop’s $HOME and /tmp directories over a 12-
day period, with an emulated 300ms client-to-server latency.
Overall, the experience was positive: in most cases, there
was no noticeable performance impact. Some activities, such
as file system intensive CVS checkouts or recursive copies,
were slower but usable. Other more typical activities, such
as browsing the Web, editing documents, and exchanging
email, had no noticeable performance degradation.

5.2 Auditing Properties
We now evaluate our optimizations’ impact on auditability.

In-memory Key Sets. As described in Section 3.3, keys
for recently-accessed or prefetched files stay in memory for
their expiration period T,,,,. This is not an issue for a thief
who steals a passive storage device, such as a USB stick.
For a laptop, because a thief can theoretically access cached-
key files without triggering a server-side audit log, users
must consider all files whose keys were retrieved between
Tioss — Texp and Tj,s5 as compromised. The size of this set
at any point in time depends on the user’s workload and on
the aggressiveness of the caching and prefetching schemes.

To quantify this issue we used a trace gathered during our
twelve-day deployment experience (Section 5.1.4) to calcu-
late the impact of various optimizations on auditability. Fig-
ure 11 shows the size of the in-memory key set at any point
in time averaged over use periods, for different key expira-
tion times and prefetching policies. The graph shows that for
reasonable key expiration and prefetching strategies, the av-
erage number of in-memory keys is small. For example, with
a 100-second key expiration time and a prefetch-directory-
on-third-miss strategy, on average there are 38 keys in mem-
ory at any instant. This is a small number and furthermore
we observed that most of these keys exist as a side-effect of
prefetching; i.e., they are files in the same directory as a file
that was accessed by a user or program.

False Positives. Prefetching affects forensics by introduc-
ing false positives in the audit log. The rate of false posi-

tives depends on the prefetching policy as well as the thief’s
workload, since false positives only concern time post-71,ss.
In the absence of an accepted “thief workload,” we cre-
ated a few scenarios that a thief might follow. Our goal was
to gauge the impact of various prefetching policies on the
rate of false positives, as a thief tries to find sensitive infor-
mation on a captured device. We investigated three scenar-
i0s: (1) the thief launches Thunderbird, reads a few emails,
browses folders, and searches for emails with a particular
keyword; (2) he launches a document editor and looks at a
few files; and (3) he inspects the history, bookmarks, cook-
ies, and passwords in a Firefox window. For these work-
loads, our default prefetch policy (prefetch directory keys
on the 3rd miss) leads to the following ratios between false
positives and total accessed keys: 3:30, 6:67, and 0:12 for
our Thunderbird, document editor, and Firefox workloads,
respectively. Audit precision is high for these scenarios.

We have also discovered bad scenarios; if the thief nav-
igates to a web page in Firefox, loading several files from
the cache directory causes Keypad to prefetch the entire di-
rectory. While this causes several false positives, the user
correctly learns that activity happened in the Firefox cache
directory. Even in such cases, the auditing implications of
our non-recursive prefetching policy are minimal, since all
false positives are localized to one directory.

5.3 Summary

We measured the performance of our Keypad prototype on
several workloads. Our measurement results and our expe-
rience using the system show that Keypad meets its goals
of adding little overhead in the office or home environment,
while remaining highly usable over cellular networks, such
as 3G. Overall, our results show that with properly param-
eterized optimizations, Keypad can provide good perfor-
mance while also maintaining good auditing fidelity. Fur-
thermore, with current and future improvements of cellular
network connectivity (e.g., 4G), we expect Keypad to have
even better performance.

6. Security Analysis

Keypad is designed to provide strong audit guarantees for
encrypted file systems if the first layer of defense, encryption
with a password or cryptographic token, is breached. Keypad
can additionally destroy the ability to read files after a mobile
device is reported lost or stolen. Although we evaluated
security properties extensively inline above, we now return
for a unified discussion.

Context and Threat Model. We designed Keypad assum-
ing that individuals who find or steal a mobile device range
in sophistication, degree of planning, and interest. Curious
individuals may insert a found USB stick into their com-
puter, enter the password on the attached sticky note, and
browse through a few files trying to find the device owner.
Petty thieves may grab laptops opportunistically but have no

real interest in accessing confidential files. Corporate spies
may plan and execute device theft carefully, with the goal of
accessing confidential files before the victim reports the de-
vice missing. We refer to all such individuals as “attackers.”

Because a user has no way of knowing the motivation and
skill of a potential attacker, Keypad assumes the worst. We
assume that an attacker has full access to the lost device’s
hardware (for laptops and USB sticks) and software (for lap-
tops). The attacker can perform cold-boot attacks on laptops,
install new software, and manipulate or sever the device’s
network traffic. The attacker can also perform lower-level
activities, such as physically extracting the hard drive from
a laptop or memory from a USB stick and interrogating it
with custom hardware. However, we do not consider attacks
in which the adversary gains control of the device, modifies
it, and returns it to the victim without his knowledge (see our
non-goals discussion in Section 2). Any attacker with con-
trol over a device while in the user’s possession could mount
a slew of malicious attacks outside the scope of a forensic
file system, ranging from online data exfiltration to the in-
stallation of password key loggers. Botnets and other forms
of malware are therefore also explicitly outside our threat
model.

Analysis. We begin with the premise that the audit servers
are trusted and secure. The key and metadata servers are
trusted to maintain accurate logs, and they are assumed to in-
corporate strong defenses to adversarial comprise, routinely
back up their state, and have their own audit mechanisms.
Neither the key server nor the metadata server is, however,
fully trusted with the private information about a user’s file
access patterns prior to 7j,ss; accessing that information re-
quires collusion between both servers or the device owner’s
invocation of the Keypad post-loss audit mechanisms. The
unavailability of servers can deny access to files; for highly
sensitive data, we argue that users would prefer unavail-
ability over the potential for unaudited future file disclo-
sure. Further, although not implemented in our prototype,
the communications between the Keypad file system and the
servers should be encrypted to ward off attackers who in-
tercept network communications prior to device theft. The
keys must change every T¢,,, seconds to ensure that an at-
tacker who extracts the current network encryption key from
the device cannot decrypt past intercepted data.

Consider now an attacker who obtains a lost or stolen
Keypad device. If the device is cold, such as a powered-down
laptop or a USB stick, then any successful attempt to access
a protected file must generate at least one log record on the
Keypad audit servers. This is true whether the attacker uses
the Keypad file system or his own hardware or software to
perform the access. All of Keypad’s mechanisms — the stor-
ing of K'F on remote servers, the entangling of the metadata
server and key server states to ensure consistency, and our
method for using IBE — enforce this property. Additionally,
the selection of 192-bit audit IDs at random makes it infea-

sible for an attacker to request information about valid audit
IDs from the key and metadata servers prior to physically
obtaining the protected device; such requests are addition-
ally thwarted by authenticating the device to the servers.

Attackers who obtain warm, computational devices —
such as running or hibernated laptops — may seek to violate
the properties of Keypad by directly accessing the device’s
memory. Cached keys K should be evicted from mem-
ory upon device hibernation, and such evictions should be
recorded on the audit servers. For fully running devices, we
must assume that an attacker has accessed any file with an
audit log entry after Tj,55 — Teqp. Although Keypad’s focus
is on providing file system auditing, a forensic analyst must
also acknowledge that applications may have sensitive data
in memory. A conservative analyst might use various heuris-
tics to identify potentially vulnerable cleartext data. For ex-
ample, he might mark as compromised any file opened since
the device’s last boot or hibernation, events that could be
recorded on the audit servers. A potentially better future so-
lution to this problem might be to employ encrypted memory
technology [Provos 2000], possibly coupled with auditing.

Most importantly, even against an attacker who obtains
warm computational devices, Keypad preserves the follow-
ing invariant: if an analyst does not mark a file as accessed,
then one can confidently conclude that the file has indeed not
been accessed by an attacker. Finally, because entries in the
key service are identified per-device, the service can deny
access to all relevant keys if a device is reported missing.

For completeness, we must also consider an attacker who
attempts to generate spurious entries in the remote audit
logs. While such spurious entries might complicate the task
of a forensic analyst, an attacker cannot use such actions to
hide their actual accesses of confidential data.

7. Related Work

Keypad is related to previous work in three areas: (1) theft-
protection systems, (2) data-protection systems, and (3) dis-
tributed file systems.

Theft-Protection Systems. Commercial and research theft-
protection systems, such as Apple’s MobileMe and Adeona
[Ristenpart 2008], rely on software running on a device that
can monitor file accesses, report device locations and file ac-
cesses to a remote server, and delete files upon request. A de-
termined attacker can circumvent these protections and ana-
lyze the device’s media using his own hardware, without the
associated monitoring software installed. Keypad provides
strong forensic and data-destruction capabilities even against
thieves who use their own hardware and software to attack a
Keypad-protected file system.

Data-Protection Systems. Encrypted file systems exist in
academia (e.g., [Blaze 1993]) and industry (e.g., BitLocker,
PGP Whole Disk, TrueCrypt). None provide remote auditing
capabilities, therefore a security breach may go undetected.
Keypad’s forensic and data-destruction capabilities are or-

thogonal to work increasing the resilience of encrypted file
systems to breach. Keypad can compose with new advances
in encrypted file systems, providing both stronger barriers to
access and a forensic trail if that barrier is breached.

ZIA [Corner 2002] and follow-on work [Corner 2003]
protect files on a device with transient authentication. ZIA
users wear small tokens that broadcast their presence. When
a token is near a protected device, the device decrypts; when
the token leaves, the device re-encrypts. Protection is lost
if an attacker obtains both the device and the token, with
no forensic guarantees. Keypad does not require a paired
device, but if one is used, Keypad still provides a forensic
trail of accesses even if both are lost or stolen. Keypad could
be combined with ZIA for additional defense in depth.

Keypad’s remote key-escrow architecture has been used
frequently in the past to achieve a number of security and pri-
vacy goals. First, capture-resilient cryptography [MacKenzie
2001] uses a key server to prevent dictionary attacks against
login passwords on stolen devices, as well as to enable re-
mote wipe-out. Second, location-aware encryption [Studer
2010] uses a remote key server to dynamically adapt a de-
vice’s data protection level based on its location. While the
device is at a trusted location (e.g., at its owner’s home),
the server provides the decryption key; when the device
is at an unknown or untrusted location, the server will re-
quire the user to enter a special password to return ob-
tain the decryption key. Third, assured-delete systems, such
as the Ephemerizer [Perlman 2005], revocable backup sys-
tems [Boneh 1996], and the Vanish distributed-trust self-
destructing data system [Geambasu 2009] adopt the key-
escrow architecture to ensure the deletion of sensitive data
stored in backup systems or on Web services. Keypad re-
sembles all of these systems in its remote key-escrow archi-
tecture and its secondary goal: post-theft data destruction. It
differs from these systems in its primary goal: fine-grained
auditability of mobile device data accesses.

In general, today’s data-protection systems differ from
our system in that they focus on data exposure prevention,
whereas Keypad focuses on data exposure detection should
prevention systems fail. In that sense, they should be consid-
ered as complementary rather than competitors.

Networked File Systems. Work in distributed file sys-
tems has aimed at providing shared and available remote
storage (e.g., [Howard 1988, Lee 1996, Sandberg 1985]).
Bayou [Peterson 1997] and Coda [Mummert 1995] sup-
port mobility, disconnected operation and data consistency.
Coda’s disconnected operation [Kistler 1991] relies on data
caching, whereas Keypad uses device pairing, coupled with
key caching, to support offline accesses. Coda supports
encrypted communication but not storage. LBFS [Muthi-
tacharoen 2001] uses compression to reduce latency for in-
teractive file access over slow wide-area networks. SFS [Fu
2002, Mazieres 1999] is a network file system that sup-
ports secure network file transfers, avoiding the need for

distributed key infrastructure by embedding public keys in
file pathnames. SFS is concerned with secure communica-
tion, not with protecting a user’s stored data from theft; it
does not encrypt data on disk and does not support auditing.

In general, these systems do not support encryption and
auditing. While they could be modified to support both on
the server, there are significant performance issues, e.g.,
streaming an NFS-hosted video over 3G or wireless is slow
and expensive. Finally, all of these systems are concerned
with the transfer of file data between a client and server;
in contrast, Keypad is concerned with key management and
the transfer of encryption keys between a file system and a
remote key server. Keypad is unique in its support for (and
integration of) encryption and audit logging; it demonstrates
the advantage of separating encryption and key management
to enforce auditing for mobile device data.

8. Conclusions

This paper described Keypad, an auditing file system for
loss- and theft-prone devices. Unlike basic disk encryption,
Keypad provides users with evidence that sensitive data ei-
ther was or was not accessed following the disappearance of
adevice. If data was accessed, Keypad gives the user an audit
log showing which directories and files were touched. It also
allows users to disable file access on lost devices, even if the
device has been disconnected from the network or its disk
has been removed. Keypad achieves its goals through the
integration of encryption, remote key management, and au-
diting. Our measurements and experience demonstrate that
Keypad is usable and effective for common workloads on
today’s mobile devices and networks.

9. Acknowledgements

We offer thanks to our shepherd Mahadev Satyanarayanan
and the anonymous reviewers for their valuable comments
on the paper. This work was supported by NSF grants CNS-
0846065, CNS-0627367, and CNS-1016477, the Google
Fellowship in Cloud Computing, the Alfred P. Sloan Re-
search Fellowship, the Torode Family Career Development
Professor, the Wissner-Slivka Chair, and a gift from Nortel
Networks.

References

[Anderson 1996] Ross Anderson and Markus Kuhn. Tamper resis-
tance: A cautionary note. In Proceedings of the 2nd USENIX
Workshop on Electronic Commerce (WOEC "96), 1996.

[Blaze 1993] Matt Blaze. A cryptographic file system for UNIX.
In Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS ’93), 1993.

[Boneh 2001] Dan Boneh and Matthew K. Franklin. Identity-
based encryption from the Weil pairing. In Proceedings of the
21st Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO ’01), 2001.

[Boneh 2002] Dan Boneh, Matthew K. Franklin, Ben Lynn, Matt
Pauker, Rishi Kacker, and Gene Tsudik. Identity-based en-
cryption download. http://crypto.stanford.edu/ibe/
download.html, 2002.

[Boneh 1996] Dan Boneh and Richard Lipton. A revocable backup
system. In Proceedings of the 6th USENIX Security Symposium,
1996.

[Corner 2002] Mark D. Corner and Brian D. Noble. Zero-
interaction authentication. In Proceedings of the Eighth Annual
International Conference on Mobile Computing and Networking
(MobiCom ’02), 2002.

[Corner 2003] Mark D. Corner and Brian D. Noble. Protecting
applications with transient authentication. In Proceedings of the
First International Conference on Mobile Systems, Applications,
and Services (MobiSys ’03), 2003.

[EncFS 2008] EncFS. EncFS encrypted filesystem. http://www.
arg0.net/encfs, 2008.

[Fu 2002] Kevin Fu, M. Frans Kaashoek, and David Mazieres. Fast
and secure distributed read-only file system. ACM Transactions
on Computer Systems (TOCS), 20(1):1-24, 2002.

[Fuse 2004] Fuse. Filesystem in userspace. http://fuse.
sourceforge.net/, 2004.

[Geambasu 2009] Roxana Geambasu, Tadayoshi Kohno, Amit
Levy, and Henry M. Levy. Vanish: Increasing data privacy with
self-destructing data. In Proceedings of the 18th USENIX Secu-
rity Symposium, 2009.

[Halderman 2008] J. Alex Halderman, Seth D. Schoen, Nadia
Heninger, William Clarkson, William Paul, Joseph A. Calan-
drino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Fel-
ten. Lest we remember: Cold boot attacks on encryption keys.
In Proceedings of the 17th USENIX Security Symposium, 2008.

[Howard 1988] John H. Howard, Michael L. Kazar, Sherri G. Me-
nees, David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance in a dis-
tributed file system. ACM Transactions on Computer Systems
(TOCS), 6(1):51-81, 1988.

[Imperva 2010] Imperva. Consumer password worst prac-
tices. http://www.imperva.com/docs/WP_Consumer_
Password_Worst_Practices.pdf, 2010.

[Kistler 1991] James J. Kistler and M. Satyanarayanan. Discon-
nected operation in the Coda file system. In Proceedings of the
13th ACM Symposium on Operating System Principles (SOSP
'91), 1991.

[Lee 1996] Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed virtual disks. In Proceedings of the 7th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’96), 1996.

[MacKenzie 2001] Philip MacKenzie and Michael K. Reiter. Del-
egation of cryptographic servers for capture-resilient devices. In
Proceedings of the 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), 2001.

[Mazieres 1999] David Mazieres, Michale Kaminsky, M. Frans
Kaashoek, and Emmett Witchel. Separating key management
from file system security. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP ’99), 1999.

[Mummert 1995] Lily B. Mummert, Maria R. Ebling, and
M. Satyanarayanan. Exploiting weak connectivity for mobile
file access. In Proceedings of 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95), 1995.

[Muthitacharoen 2001] Athicha Muthitacharoen, Benjie Chen, and
David Mazieres. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), 2001.

[Nusca 2009] Andrew Nusca. How to: Keep your laptop from being
stolen. http://www.zdnet .com/, February 2009.

[Perlman 2005] Radia Perlman. File system design with assured
delete. In Proceedings of the 3rd IEEE International Security in
Storage Workshop (SISW ’05), 2005.

[Peterson 1997] Karin Peterson, Mike J. Spreitzer, Douglas B.
Terry, Marvin M. Theimer, and Alan J. Demers. Flexible update
propagation for weakly consistent replication. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles
(SOSP °97), 1997.

[Ponemon Institute 2008] Ponemon Institute. Airport insecurity:
The case of lost and missing laptops; U.S. and EMEA result.
http://www.ponemon.org/data-security, 2008.

[Provos 2000] Niels Provos. Encrypting virtual memory. In Pro-
ceedings of the 9th USENIX Security Symposium, 2000.

[Ristenpart 2008] Thomas Ristenpart, Gabriel Maganis, Arvind Kr-
ishnamurthy, and Tadayoshi Kohno. Privacy-preserving location
tracking of lost or stolen devices: Cryptographic techniques and
replacing trusted third parties with DHTs. In Proceedings of the
17th USENIX Security Symposium, 2008.

[Robertson 2010] Jordan Robertson. http://www.
usatoday.com/tech/news/computersecurity/
2010-02-08-security-chip-pc-hacked_N.htm, 2010.

[Rutkowska 2009] Joanna Rutkowska. Evil maid goes after
TrueCrypt! http://theinvisiblethings.blogspot.

com/2009/10/evil-maid-goes—after-truecrypt.html,
2009.

[Sandberg 1985] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design and implemen-
tation of the Sun network file system. In Proceedings of the
USENIX Annual Technical Conference, 1985.

[Savage 2009] Michael Savage. NHS ‘loses’
thousands of medical records. http://www.
independent.co.uk/news/uk/politics/

nhs-loses-thousands-of-medical-records-1690398.

html, 2009.

[Shamir 1985] Adi Shamir. Identity-based cryptosystems and sig-
nature schemes. In Proceedings of the 5th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO
’85), 1985.

[Sorrel 2010] Charlie Sorrel. Brits send 4,500 USB sticks to the
cleaners. http://www.wired.com/, 2010.

[Studer 2010] Ahren Studer and Adrian Perrig. Mobile user
location-specific encryption (MULE): Using your office as your
password. In Proceedings of the 3rd ACM Conference on Wire-
less Network Security (WiSec ’10), 2010.

[Whitten 1999] Alma Whitten and J.D. Tygar. Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0. In Proceedings of the
8th USENIX Security Symposium, 1999.

