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Abstract

The Ninja project seeks to enable the broad innovation of robust, scalable, distributed Internet services, and to
permit the emerging class of extremely heterogeneous devices to seamlessly access these services. Our architecture
consists of four basic elements: bases, which are powerful workstation cluster environments with a software platform
that simplifies scalable service construction; units, which are the devices by which users access the services; active
proxies, which are transformational elements that are used for unit- or service-specific adaptation; and paths, which are
an abstraction through which units, services, and active proxies are composed. © 2001 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The emerging Internet landscape is populated
by rich services of immense scale that are offered to
a diverse spectrum of clients. This presents exciting
opportunities for innovation in the kinds of ser-
vices that can be created, but also presents tre-
mendous design and engineering challenges. The
traditional suite of information stores, commerce
sites, network services, and search engines are be-
ing combined in novel ways to provide new ser-
vices that aggregate and transform many sources
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of information. In addition, services are presenting
themselves in a multitude of forms to match the
particular capabilities of PCs, PDAs, Webphones,
and other devices; this adaptation to diversity
raises new notions of service composition and
content transformation. Moreover, these new ser-
vices may be utilized by millions of users.

In this opportunity for innovation and vast
delivery lies a deep engineering challenge: a suc-
cessful service may need to scale to huge levels of
load over a short period and it must be continu-
ously available. The Ninja project seeks to address
these two goals — enabling broad innovation of
service design and easily constructing scalable,
robust services — through a distributed service ar-
chitecture that deals with huge throughput de-
mands and availability requirements in a generic
fashion, while facilitating service composition.
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The distributed service architecture tackles the
problem of ease of authoring scalable, robust ser-
vices at several levels. At the network architecture
level, structure is imposed on the Internet by a
partitioning into three tiers (scalable service plat-
forms, transformational intermediaries between
devices and services, and the devices themselves) to
facilitate state management and consistency while
operating in the presence of failures. Deep pro-
cessing power and persistent storage are provided
within the service platform through the use of well-
engineered clusters on fast, dedicated networks,
while soft state and functional transformations are
provided close to the devices. A service is rendered
along a path crossing all the tiers. These paths are
the natural unit of adaptation, optimization and
management.

At the language level, services are written in a
type-safe language (Java) to reduce errors and to
facilitate composition at well-defined interfaces.
Code mobility is harnessed to dynamically upload
services into the platform. At the system level, a
platform provides a set of interfaces and dictates a
programming discipline that yields efficiently
pipelined services that are robust to excessive load,
replicated to achieve high absolute throughput,
and tolerant of node failures. Services describe
themselves to a service discovery service, which
itself must scale, so that they can be composed
programmatically to yield new services. It is the
structure and careful design of the overall platform
that simplifies the task of authoring services, be-
cause they inherit the approach to scalability,
availability, fault-tolerance, data consistency, and
persistence from the platform.

We begin in Section 2 with an overview of the
entire Ninja platform architecture and an intro-
duction of its basic terms and concepts. Section 3
develops the core service platform, called a base,
including the programming model for services, the
execution vehicle, and the approach to scalable,
persistent state. Section 4 describes the character-
istics of emerging devices, called units, which
fundamentally rely upon the infrastructure. Sec-
tion 5 describes the role and function of the
transformational intermediaries, called active
proxies. Section 6 lays the foundation for service
composition, showing how services describe

themselves and locate other services in the wide
area. Section 7 illustrates how services are com-
posed across the platform tiers through the path
concept. Section § puts these concepts together in
four distinct services. The remaining sections dis-
cuss related work and future directions.

2. Overview of the Ninja architecture

In Fig. 1, we provide a high-level illustration of
the Ninja architecture, decomposing it into four
basic elements: bases, which are the rich environ-
ments that are engineered to support scalable and
robust services, units, which are the numerous, het-
erogeneous devices that we wish to support, active
proxies, which are transformational elements used
for device- or service-specific adaptation, and paths,
an abstraction used to compose the other elements.
We motivate and explore each of these in turn.

2.1. Building robust services in bases

We define a service as software embedded in the
Internet infrastructure that exports a network-
accessible, typed, programmatic interface, and that
provides strong operational guarantees (such as
high availability). The task of building and main-
taining services is extremely challenging, since if
they are to be depended upon, they must have the
essential properties of scalability, availability,
fault-tolerance, and data consistency and persis-
tence, all in the face of voluminuous and potentially
growing traffic demands. Unfortunately, there is
currently a lack of suitable reusable building blocks
and design methodologies for service construction.

We address this challenge in part by con-
straining the execution environment of services: we
mandate that the core of the service must run in a
well-engineered cluster of workstations, which we
call a base. Clusters [3] are a natural platform for
building Internet services: each cluster node rep-
resents an independent failure boundary, which
means that replication of computation and data
can be used to provide fault-tolerance. A cluster
permits incremental scalability as nodes can
be added to increase capacity. Coupled with
high-performance system area networks, clusters
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Fig. 1. The Ninja platform architecture. The architecture consists of bases (services running on clusters of workstations), active proxies
(stateless or soft-state intermediaries between units and services), units (heterogeneous devices and sensors), and paths (a composition

chain across units, proxies, and services in bases).

can deliver excellent performance for relatively
low cost. Modern cluster networks can achieve
greater than 1 Gb/s throughput with 10-100 ps
latency.

Designing software to run on clusters of work-
stations is known to be difficult [15]. To simplify
the task of authoring new services, we have con-
structed a cluster-based software platform (called
vSpace) that allows service authors to concentrate
on application-specific functionality, rather than
on details related to scalability, fault-tolerance,
and composability. Services authored to run on
the vSpace platform inherit the essential service
properties from the platform, greatly reducing the
size and complexity of service code.

vSpace supports the dynamic uploading of new
services by trusted or untrusted third parties; we
believe this open infrastructure is an important
property necessary to sustain the distributed in-
novation that has led to the current success of the
Internet. Authors can construct their services lo-
cally, but then upload their services into bases that
are externally maintained.

2.2. Device diversity

The spectrum of network-attached client de-
vices is growing in diversity and scale. In addition

to PCs, laptops, and the now familiar class of
PDAs and mobile devices, networks of even more
resource-constrained tiny devices such as sensors
and actuators are being attached to the Internet.
This large family of client devices, which we call
units, may have limited connectivity and low or
intermittent bandwidth, poor computational abil-
ities, and may be able to handle only a small set of
data formats and network protocols. We believe
that there will be a very large number of units
attached to the network, reaching scales of hun-
dreds of millions, and eventually, billions of
devices.

Units, by nature, are typically not useful
without supporting infrastructure. We assume
that units can be easily lost or broken, implying
that any state that they manage must be repli-
cated in a durable environment, such as a service
running in a base, which can provide vast amount
of highly available, durable storage. Inexpensive
or small units may not have enough computa-
tional ability to handle the rich set of data types
and the growing set of protocols deployed in the
Internet, implying that such units must rely on
surrogates that adapt content and protocols on
their behalf.

Because some units are mobile, they may expe-
rience regular periods of disconnected operation.
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Bases can assist such weakly connected units with
the consistency management of data shared across
units. Similarly, while a unit is disconnected, a
service running on a base can act as the unit’s
surrogate by responding to requests based on the
most recent information in the service’s persistent
data store.

2.3. Adaptation

The growing number of devices with Internet
access capabilities presents a unique set of prob-
lems to the designers of Internet-based services. As
the demand for continuous access to content is
increasing, access to services is being demanded in
new environments such as automobiles [26] and
kiosks in airplane seats [25], and through new
devices such as Web-phones. Constructing a ser-
vice that can be easily and securely used from this
diversity of contexts and devices is daunting, be-
cause of the huge variation in computational
power, network connectivity, and interface capa-
bilities of the devices. Additionally, the weak
computational ability of small devices such as
pagers and PDAs prevents them from using
cryptographic protocols such as SSL to access se-
cure services. In today’s Internet, this diversity in
client capabilities simply means that most services
are inaccessible to clients other than standard
home PCs or office workstations.

Rather than forcing services to adapt their
content and access protocols to the abilities of all
current and future devices, we place transforma-
tional intermediaries, called active proxies, be-
tween devices and services to shield them from
each other. An active proxy can transform data
types through a process called distillation, adapt
protocols (e.g., by converting an SSL connection
into a less expensive shared-key encrypted channel
for CPU constrained devices), or even adapt the
value of content by removing sensitive information
before content is displayed on an untrusted access
point. Examples of active proxies include wireless
basestations, network gateways, firewalls, caching
proxies, and transformational proxies. Devices
may migrate to a new geographic or administrative
domain, and in the process may need to begin
using a new active proxy.

2.4. The composition of services

Instead of constructing a set of isolated, verti-
cal services that can handle a fixed set of devices,
our architecture supports the dynamic composi-
tion of horizontal services into a path, as well as
adaptation along that path. A path is a flow of
typed data through multiple services across the
wide area, including the interposition of trans-
formational operators to adapt the data into the
form expected by the next service or device along
the path. An essential feature of services that en-
able path composition is programmatic access;
services must export typed, programmatically ac-
cessible interfaces, as opposed to the untyped,
unstructured user interfaces common to services
today.

Since paths can be established dynamically,
the path creation infrastructure can perform data
flow optimization by examining many different
potential paths before deciding on a particular
one to use. During the course of this examina-
tion, it can weigh the costs of the various
paths, and choose a path that optimizes for
quality of service, resource consumption, or
some other metric. By allowing the optimization
process to continue through the lifetime of a
given path, the infrastructure adapts the path to
the changing characteristics of the execution en-
vironment. For example, if a network link be-
comes overloaded while data are flowing through
the path, this flow may be redirected through a
different channel to improve the quality of
service.

A necessary step in forming a path is being able
to locate services to place in that path. The Ninja
architecture includes a service discovery service
(SDS) that allows both human users and programs
to locate appropriate services across the wide area
based on service attribute queries. All services
publish descriptions of themselves to SDS in-
stances running in their local base. These instances
are organized in a hierarchical structure, matching
the administrative structure of the network. Sum-
mary information about known services is ex-
changed through this hierarchy; searches similarly
propagate through the hierarchy until matching
information is found.
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3. Bases: scalable platforms for Internet services

We have constructed a software platform that
runs on cluster-of-workstation bases to help alle-
viate the challenges of scalable, high-performance
service construction. The platform consists of a
programming model and I/O substrate geared
towards obtaining high concurrency, and a cluster-
based execution environment (vSpace) that pro-
vides facilities for service component replication,
load-balancing, and fault-tolerance. In addition,
we provide services with a cluster-based, scalable
storage platform (distributed data structures, or
DDSs) that exposes a coherent image of persistent
data across the physical nodes of a cluster. We
describe each of these three elements in turn.

3.1. A programming model and I/O substrate for
high-concurrency services

Popular Internet services must be able to handle
a very high throughput, perhaps even reaching
tens of thousands of requests per second in the
extreme case. A service must remain robust under
this extreme load, and it must also gracefully
handle temporary bursts during which the offered
load exceeds the capacity of the service. We call the
process of achieving this robustness conditioning
the service. A necessary (but not sufficient) step in
conditioning is selecting an appropriate program-
ming model and concurrency strategy that allows
the service author and the service’s execution
environment to observe and manage constrained
resources such as threads and client tasks.

Our programming model imposes a particular
abstraction on services, illustrated in Fig. 2. Given
a request from a wide-area client, the service pro-
cesses that request through a sequence of logically
distinct stages, each of which is separated by a
high- or variable-latency operation. For example,
a Web server might have three stages: reading and
parsing an HTTP request from a browser, re-
trieving the requested file from the file system, and
returning a formatted response to the browser. We
impose the constraint that all data sharing between
these stages is done using pass-by-value semantics,
for example, through the exchange of messages
containing the data to be shared. This constraint
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Fig. 2. Splitting a service into stages. Our programming model
views a service as a sequence of stages, separated by high- or
variable-latency operations. Stages only share data using pass-
by-value semantics, for example, by exchanging messages.

acts to decouple the stages, allowing them to be
isolated from each other, and perhaps be physi-
cally separated across address spaces or physical
machine boundaries.

Given these separated stages, our programming
model offers four design patterns that authors and
the service infrastructure can apply to compose
and condition these stages (Fig. 3):

Wrap. The wrap pattern places a queue in front
of a stage, and assigns some number of threads to
the stage in order to process tasks that arrive on
the queue. The queue conditions the stage to load;
excess work that cannot be absorbed by the stage’s
threads is buffered in the queue. This queue also
serves to expose scheduling and admission control
mechanisms to the stage: because the queue is
apparent, the code in the stage can decide the or-
der in which to process tasks, and it can also
choose to drop tasks in the case of excessive or
long-lasting overload. Because threads are dedi-
cated to the stage, applying the wrap pattern al-
lows the stage to execute independently of other
stages.

Pipeline. The pipeline pattern takes a wrapped
stage, and splits it into two pipelined, wrapped
stages. Pipelining further decouples a stage, and
allows for functional parallelism across processors
or cluster nodes. Pipelining permits optimizations
such as having a single thread repeatedly execute
the same code while processing many tasks from a
queue, thereby increasing instruction locality.

Combine. The combine pattern is the logical
inverse of the pipeline pattern. Given two previ-
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Fig. 3. The four design patterns. The four design patterns, wrap, pipeline, combine, and replicate, can be applied to stages of a service to
condition it against load, failures, and limited or bottleneck resources.

ously independent, wrapped stages, the combine
operator fuses the code of the two stages into a
single, wrapped stage. Combine permits resource
sharing and fate sharing between these previously
independent stages.

Replicate. Given a wrapped stage, the replicate
pattern duplicates that stage on a number of in-
dependent processors or cluster nodes. Replication
is used to eliminate bottlenecks; by replicating a
stage, the resources that can be applied to its
bottleneck are augmented, hopefully increasing
the throughput of the stage. Replication also
duplicates the stage’s functionality across multiple
failure boundaries, introducing the potential for
fault-tolerance.

We have implemented a programming library
that makes it simple for both service authors and
the service’s execution environment to apply these
patterns to pieces of code. All network communi-
cation and disk I/O provided by this library are
built using a nonblocking, asynchronous event-
driven style of programming. This event-driven
style nicely matches the task-driven composition of
stages, and also permits each note to scale to the
point where it can handle many thousands of
concurrent tasks, network connections, and disk
interactions.

3.1.1. Java-based 11O substrate implementation
The Ninja base architecture makes extensive use
of the Java [19] programming language, which
provides strong typing, platform independence,
code mobility, and automatic memory manage-
ment. These language properties are greatly ben-
eficial for engineering robust Internet services,
eliminating many common sources of bugs. Java
also provides flexibility in terms of service de-

ployment across multiple architectures. We make
use of optimizing Java compilers including Open-
JIT [30] and the IBM JIT compiler [27].

Implementing the base platform in Java pre-
sented two important challenges. The first was the
lack of nonblocking I/O mechanisms in the Java
core libraries. We overcame this by implementing
our own nonblocking I/O library using native code
wrappers to existing system calls, for example,
nonblocking sockets and select. The second was
providing efficient access to specialized interfaces,
such as user-level network interfaces to the clus-
ter’s system area network. The native code inter-
face provided by Java is ill-suited for these
interfaces, as they require fast access to hardware
resources and pinned I/O buffers outside of the
Java heap. We have developed an extension to the
Java environment, Jaguar [46], which performs a
compile-time specialization of Java bytecode to
perform low-level operations directly, while
maintaining type safety and portability. We have
used Jaguar to implement a Java interface to the
VIA [7,41] cluster network interface, which obtains
80 ps round-trip latency and over 488 Mbit/s
bandwidth over the Myrinet [32] system area net-
work. This is equivalent to the performance of
VIA as accessed from C and is more than an order
of magnitude greater than that possible when us-
ing Java’s native code interface. Jaguar has also
been used to implement fast object serialization
and memory-mapped file access.

3.2. The vspace execution platform
vSpace is an execution environment for scalable

Internet services which operates on a cluster of
workstations (see Fig. 4). vSpace services are
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Fig. 4. Software architecture of a base. A base consists of a cluster, the nodes of which run the vSpace execution environment. Services
are implemented as a graph of workers which communicate through a typed task dispatch mechanism. vSpace load balances tasks
across workers based on information from a cluster load monitor. Workers are replicated across nodes for scalability and availability,
and share global state through a consistent, scalable storage platform (distributed data structures, or DDS).

constructed using the programming model de-
scribed in the previous section; services are con-
structed as a graph of workers, cach of which
consists of a fixed-size thread pool, an incoming
event queue, and a set of methods that implement
the worker’s logic. A vSpace service is described by
a formal service definition, which precisely specifies
the set of workers in the service, their code, and
resource requirements. The act of service publica-
tion resolves intra-service dependencies and effec-
tively “freezes” the code used by this particular
version of the service. This allows the entire service
to be treated as a versioned, immutable entity
which is ready for deployment and composition
with other services. Further modifications to the
service code result in a new version of the service,
and do not affect previously published versions.
Workers correspond directly to stages, as de-
scribed in the previous section. Workers commu-
nicate by asynchronously pushing typed messages
onto other workers’ queues. Worker instances and
workers of different types are pipelined, executing
in parallel on the multiple CPUs and physical
nodes in the cluster. vSpace uses the replicate de-
sign pattern to instantiate copies of workers across
multiple cluster nodes; each worker instance,
called a clone, uses the same code base and shares
global persistent state through a distributed data
structure (described below). A set of worker clones

of the same type are called a clone group. vSpace
automatically spawns and destroys clones in re-
sponse to observed system load; workers’ queue
lengths and worker execution times are both used
to determine the current load. Scalability and
fault-tolerance are obtained by replicating clones
across multiple physical resources (such as the
nodes of the cluster), and by providing a mecha-
nism for failure detection and clone restart.

A worker may send one or more outgoing tasks
to a named clone group, in which case the out-
going tasks are load-balanced across the clones in
that group. Optionally, the sender may specify a
particular clone as the destination for a task. This
is used as a locality optimization to allow the result
of a previous task dispatch to return to the original
sender.

3.3. Distributed data structures

A distributed data structure (DDS) [20] is a self-
managing storage layer designed to run on a cluster
of workstations at the scale required by Internet
service workloads. A DDS has all of the previously
mentioned service properties: high throughput,
high concurrency, availability, incremental scala-
bility, and strict consistency of its data, but pro-
vides a narrow data structure interface. Service
authors see the DDS as a conventional data
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structure, such as a hash table, a tree, or a log.
Behind this interface, the DDS platform hides all
of the mechanisms used to access, partition, repli-
cate, scale, and recover the data in the DDS (il-
lustrated in Fig. 5). The DDS greatly simplifies
service construction by hiding the complexity of
robustly managing scalable persistent state that is
partitioned and replicated across the cluster.

We have implemented a distributed hash table
as an example of DDS. All operations on elements
inside this distributed hash table are atomic, in
that any operation completes entirely, or not at all.
The hash table has one-copy equivalence, so al-
though data elements in the hash table are repli-
cated across multiple hash table nodes (or bricks),
workers that use the hash table see a single, logical
data item. Two-phase commit is used to keep all
replicas coherent. We have not yet implemented
transactions across multiple elements or opera-

tions, but we believe that the atomic consistency
provided by our current distributed hash table is
already strong enough to support a large class of
interesting services.

To demonstrate the scalability and fault-toler-
ance of the distributed hash table, we have run a
number of performance analyses on a large cluster
of workstations (the UC Berkeley Millennium
cluster [13], consisting of two hundred and twelve
500MHz Pentium CPUs across 67 SMPs, each
with either S00MB or 1GB of physical memory,
two 15 GB hard drives, and all connected by a
Gigabit switched Ethernet). Fig. 6 demonstrates
linear scaling in throughput of the distributed hash
table as the number of brick nodes serving data is
increased; note that for this experiment, most data
were resident in a physical memory cache on brick
nodes, rather than forcing a read from disk per
request.

¢
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Fig. 5. High-level view of a DDS. A DDS is a self-managing data repository running on a cluster of workstations. All service instances
(S) in the cluster see the same consistent image of the DDS; as a result, any WAN client (C) can communicate with any service instance.

100000

10000 -

1000 +--

max throughput (ops/s)

100 T

(128,61432)

(128,13582)

1 10

100 1000

# of DDS bricks

Fig. 6. Throughput scalability. This benchmark shows the linear scaling of throughput as a function of the number of bricks serving in
a distributed hash table; note that both axis have logarithmic scales. As we added more bricks to the DDS, we increased the number of

workers using the DDS until throughput saturated.



S.D. Gribble et al. | Computer Networks 35 (2001) 473497 481

600

DOO -+

throughput (reads/s)

F00 o+ vvere e

0 50000 100000 150000 200000 250000 300000

time (ms)

Fig. 7. Availability and recovery. This benchmark shows the read throughput of a three-node hash table as a deliberate single-node

fault is induced, and afterwards as recovery is performed.

In Fig. 7, we show the read throughput of a
three-node distributed hash table as a fault is de-
liberately induced in one node, and as that failed
node undergoes recovery. This figure shows that
the read throughput of this hash table degrades to
2/3rds of its initial throughput as one of the three
nodes crashes, but quickly resumes to its full
throughput as the crashed node completes its re-
covery.

We have also experimented with scaling the
capacity of a distributed hash table by creating
and populating a single hash table with over 1 TB
of data spread over 128 CPUs and 128 disks. This
1 TB hash table took 1.5 h to populate, achieving a
write throughput of 256 MB/s (2 MB/s per disk).
The disk write performance was seek limited, as
random keys were inserted into the hash table for
this experiment.

Our DDS implementation makes use of the
exposed queues and events (as described in Section
3.1) to implement efficient internal task scheduling.
Exposing the queues to the DDS code makes it is
possible for each DDS brick to “peek’ into its
queue of incoming requests and schedule them
based on resource availability. For example, in-
coming read requests for which data are present in
the buffer cache can be scheduled before those
requiring disk access. This technique leads to
higher throughput, as head-of-line blocking is re-
duced. The use of event queues also makes it
possible to reorder disk accesses for greater local-
ity and to perform prefetching, similar to optimi-
zations used in filesystems and database storage
managers.

4. Units

The space of units is extremely diverse with
large variations in CPU, memory, and storage
capabilities, communication bandwidths and la-
tencies, and user interfaces. In this section, we
briefly circumscribe this space by describing a
representative set of units. We then focus on a
particularly interesting new class of units, net-
worked sensors that are the most constrained in
terms of capabilities and resources.

PCs and laptops are examples of extremely ca-
pable units, in that they have liberal amounts of
CPU and memory resources, persistent storage,
and sophisticated display capabilities. However,
laptops still must be capable of dealing with mo-
bility, disconnected operation, and low bandwidth
or unreliable communication over wireless net-
works.

PDAs represent a class of device with limited
computation, displays, user interfaces, and persis-
tent storage. Cell phones are currently distinct
from PDAs in that they have much more limited
computational abilities and they are essentially
continuously connected to the network. There is,
however, a strong trend towards the convergence
of PDA and cell phone capabilities, yielding a class
of units that has the minimal graphical user in-
terface, storage, and programmability of a PDA,
but with the continuous connectivity of a cell
phone.

The most limited form of units that we consider
are networked sensors and actuators. These
devices have extremely limited computational
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resources, almost no storage capabilities and no
human interface. In addition to limited commu-
nication bandwidth, communication is extremely
expensive for these devices, since power is their
most critical resource and communication con-
sume significant power. As an example of net-
worked sensors, we have developed a device, called
a mote that contains a microcontroller, a radio,
and photo and light sensors. This device (which is
slightly larger than a quarter) can be placed in the
environment or carried by an individual, and re-
ports information collected from its sensors to
services for analysis. We report further on our
experiences with this device below.

4.1. Characteristics of networked sensors

The characteristics of networked sensors re-
quire a design methodology focused on extreme
efficiency, both in terms of computation and
power. As an example of networked sensor, we
have assembled a “mote” that includes an AT-
MEL 8535 4 MHz microcontroller with 512 B of
SRAM and 8 KB of flash memory, an RF radio
with 10 kbps throughput, a light and temperature
sensor, and three LEDs for visual feedback of
information (Fig. 8).

Somewhat surprisingly, the programming
model that we have designed for these tiny devices
is very similar to that of high-throughput services
in vSpace, although we use this model for the sake
of power and computational efficiency, rather than
throughput and load conditioning. Power is the
most precious resource on these devices, and
communication is the most expensive operation in

Fig. 8. A TinyOS-based mote. This “mote” includes a 4 MHz
microcontroller, a software-driven radio, and an application
that coordinates with neighboring motes to discover an ad hoc
sensor network routing topology.

terms of power consumption. Given this, the
ability to put hardware components into a standby
state can save significant amounts of power. To
maximize the opportunity for putting the device’s
CPU into standby, we have developed an event-
driven software architecture for our operating
systems and applications. The presence of blocking
operations could limit the system’s ability to
switch into a low-power mode, especially if hard-
ware polling is used to complete a blocking oper-
ation. In contrast, with an event-driven system, all
processing occur in response to hardware events.
This allows the processor to enter standby mode
between events, as no computation needs to be
done there until the next hardware event occurs.

We have also observed that our network sen-
sors must be able to handle significant amounts
of concurrency. Sensors are typically I/O centric,
and must be capable of supporting multiple, si-
multaneous flows of information. Flows can be
local to a sensor (e.g., the interaction between a
CPU and the physical sensor devices or the radio
used for communication), or they may span
across multiple sensors in a sensor network. For
example, networked sensors may cooperate to
propagate cach other’s data towards a central
collection point. In this case, the microcontrol-
ler’s interaction with its sensors must be over-
lapped with its operation of the radio and
execution of networking protocols. To exacerbate
the situation, on many microcontrollers, the CPU
must directly interact with the radio (compared
with PCs which typically have dedicated NICs to
service the communications device), introducing
real-time constraints.

To address these challenges, we have developed
the TinyOS operating environment for networked
sensors. TinyOS has a component-based architec-
ture in which each hardware and software com-
ponent exports an interface that contains the set of
commands that it accepts as well the set of events
that it fires (Fig. 9). Internally, a software com-
ponent is given a statically allocated storage frame.
While handling a command, a component can emit
tasks that TinyOS’s scheduler must execute. Tasks
are similar to vSpace workers, but they share the
state of the component that created them rather
than sharing state through the passing of typed
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Fig. 9. A TinyOS software component. Each TinyOS software
component accepts and emits commands and events. Com-
mands flow from higher level layers to lower levels, and events
flow from lower level layers to higher levels.

Java objects. Unlike general purpose threads, Ti-
nyOS tasks execute to completion and are atomic
with respect to each other. TinyOS includes a
two-level scheduling mechanism that allows high-
priority events to preempt low-priority tasks.
Real-time constraints (e.g., servicing the radio) are
met by using high-priority events, while less critical
operations (such as gathering data from a tem-
perature sensor) are serviced with the remaining
low-priority CPU time.

The use of the TinyOS component model and
scheduler greatly simplifies the composition of
multiple components on a sensor. To demonstrate
this, we have built an application in which our
motes self-assemble in an ad hoc network, and
communicate their routing information to a stati-
cally configured active proxy node. This routing
discovery application, as well as the particular
operating system tuned for this hardware, are
composed of several TinyOS components. The
components are composed together using a CAD
tool (which represents commands and events with
CAD symbols), and structural VHDL is exported
by the CAD tool. This VHDL is used at compile
time to assemble the system image that is down-
loaded into the device’s flash memory. A particu-

larly interesting feature of these devices is the
ability to wirelessly reprogram them by sending
system images over the sensor network.

5. Active proxies

Active proxies in the Ninja architecture serve
the purpose of performing “impedance matching”
between client devices and services by adapting
data and access protocols to the devices’ and ser-
vices’ needs. Because active proxies can execute in
an environment local to devices, active proxies can
perform context-aware optimizations and trans-
formations on behalf of devices. We believe that
active proxies bring three essential properties to
the Ninja architecture: dynamic service adapta-
tion, secure access to information, and the fusion
of multiple devices. We describe each of these in
turn.

5.1. Dynamic service adaptation

In the Ninja architecture, active proxies assume
the responsibility for mitigating the heterogeneity
of units by translating both network protocols and
data formats between clients and services. At the
network protocol level, active proxies can com-
municate with clients through protocols specially
designed for low-computation, low-power, or
poorly connected devices. This is important since
common service communication protocols such as
Java RMI, Ninja RPC, and Jini assume that cli-
ents are well connected and computationally
powerful. Similarly, active proxies can be used to
help establish connections between clients and
services by performing more complicated tasks
associated with cryptographic handshakes [16].

Additionally, active proxies can distill service
content into a format more suitable for small
devices [17]. Content presentation can be tailored
for small screen layouts, and image resolution and
bit-depth reduced both for limited display and
network capabilities of these devices [15,17]. For
example, a HTML representation of the content
can be rendered as WML for a WAP [44]-enabled
phone, a custom application format, or even as
voice. Active proxies may perform this filtering at
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the application level (e.g., by selectively dropping
MPEG frames in a video stream), or at the pro-
tocol level (e.g., by delaying or compressing data
to increase actual or perceived throughput, based
on knowledge of the network conditions that the
device is currently experiencing).

5.2. Secure service access from diverse clients

Current security models of infrastructure ser-
vices assume that both the user’s access device and
the software running on it can be trusted not to
intercept or send private information elsewhere.
Unfortunately, this is not the case for many access
points, including public kiosks. A subverted kiosk
is able to record all keystrokes (such as typed
passwords), monitor network traffic to extract
personal information such as account numbers or
mailing addresses, or perform active attacks by
hijacking connections, even if the network trans-
mission is encrypted. To avoid such attacks,
trusted active proxies can perform context-aware
transformations on data before it arrives at a kiosk
to reduce the content value. Proxies can also in-
troduce alternative authentication mechanisms
(such as one-time passwords) so that users will not
need to divulge passwords or other personal in-
formation to untrusted infrastructure. In Section
8.2, we describe in detail an example framework
that has this functionality.

PDAs are problematic because they are gen-
erally power-constrained, computationally limit-
ed devices with little memory and poor
networking capabilities. To perform the industry-
standard SSL. handshake phase on one such
device (a Palm Pilot) requires 5-10 s. This
latency imposes an intolerable delay for con-
nection setup, which is particularly undesirable if
network connectivity is intermittent. An SSL
implementation that uses elliptic curve cryptog-
raphy [8] is feasible on a Palm Pilot V, but few
Internet services support that option. Active
proxies can be used to adapt the security
requirements of services to the capabilities of the
device. Trusted active proxies can present units
with power and computation efficient security
protocols, while communicating with end services
through standard protocols.

5.3. Multiple device fusion

In addition to enabling basic access, active
proxies can be used to combine the capabilities of
several devices. This is useful for both content and
security adaptation. For example, the limited GUI
of a PDA can be supplemented by the richer,
larger display of a public kiosk, by placing most of
the application on the kiosk while displaying and
entering sensitive personal information on the
PDA. Entering form data using a pen-based in-
terface is tedious at best and even more cumber-
some using number pads on devices such as
cellular telephones. Active proxies can split the
trust between the PDA and the public terminal by
fusing the devices together to provide one logical
channel with secure access to the end service. This
device fusion can only be done because the active
proxy is aware of the context in which the devices
are being used, and thus serves as another example
of context-aware adaptation.

6. Service location across the wide area

The service discovery service (SDS) [10] serves
two important, and complementary roles: it pro-
vides a mechanism by which services can announce
their presence to the infrastructure, and it provides
a mechanism by which both human users and
programs can locate these announced services
across the wide area. While designing the SDS, we
focused on providing a fully secure, semantically
rich service location system that would successfully
scale to the wide area. The SDS is a scalable, fault-
tolerant, and secure information repository, pro-
viding clients with directory-style access to all
available services. Services describe themselves to
local SDS instances; these descriptions are pub-
lished and aggregated across a wide-area hierar-
chy, and clients can query this hierarchy of SDS
instances in order to locate services.

In addition to serving as a location mechanism,
the SDS also plays an important role in helping
clients determine the trustworthiness of services,
and vice versa. This role is critical in an open
environment, where there are many opportunities
for misuse, both from fraudulent services and
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misbehaving clients. To address security concerns,
the SDS controls the set of agents that has the
ability to discover services, allowing capability-
based access control, i.e., to hide the existence of
services rather than (or in addition to) disallowing
access to a located service.

As a globally distributed, wide-area service, the
SDS must surmount challenges that are not faced
by services that operate solely inside a base. The
global SDS service must be robust against network
partitions and component failures, it must address
the potential bandwidth limitations between re-
mote SDS entities, and it must arrange its indi-
vidual SDS instance components into a hierarchy
to distribute the query workload (implying queries
must be routed across this hierarchy).

6.1. Design

The SDS system (see Fig. 10) is composed of
three main components: clients, services, and SDS
servers. Clients want to discover the services that
are running in the network. SDS servers solicit
information from the services and then use it to
fulfill client queries. To provide scalability in both
number of services and volume of client requests,
SDS servers are organized into a hierarchical
structure. Services and requests are associated with
SDS servers according to each server’s domain, the
network extent that it covers.

To propagate information across potentially
heterogeneous service architectures, we use an
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server. Because servers keep a cache of an-
nouncement service descriptions, a restarted server
restores its data by listening to the channel.

To provide authentication, privacy, and access
control, SDS servers work with a certificate au-
thority (CA) and a capability manager (CM) using
secure communication protocols. The CA is a
trusted source which provides proof of the binding
between a principal and its public and encryption
keys, in the form of a certificate. The CM manages
individual access control lists (ACLs) on behalf of
each authenticated service. Communication be-
tween SDS components utilize appropriate secu-
rity measures while minimizing the performance
penalty. SDS server announcements need authen-
tication, and are therefore signed, including an
embedded timestamp. Service providers encrypt
their description broadcasts with a symmetric key,
which accompanies the message as a data block
encrypted by the server’s public key. This allows
caching of the symmetric key in the common case,
and simple recovery of the symmetric key during
failure recovery. Communication among servers
and clients relies on a separate authenticated
transport channel.

A client queries its SDS server over an au-
thenticated channel to pass in an XML service
template and its access rights in the form of ca-
pabilities. The server uses an internal XML dat-
abase (called XSet [51]), to find services accessible
to the client which satisfy the query, and returns
them to the client.

In order to make their services known, service
providers listen on the global multicast channel to
routinely determine their current responsible SDS
server. Providers periodically broadcast service
descriptions to a multicast channel, using the ad-
dress and broadcast rate defined by the server
announcement messages. Providers are also re-
sponsible for contacting a capability manager and
defining access control information for its services.

6.2. Wide-area operation

The SDS wide-area hierarchy is designed to
scale-up in both query volume and number of
available services, while adapting to changes in the
underlying entities. The primary goal is to allow

queries from all clients to reach services on all SDS
servers. In our approach, servers dynamically ar-
range themselves into a multi-level hierarchy,
summary information is propagated up to parent
servers, and queries are partitioned among and
forwarded to the relevant servers.

The actual organization of the hierarchy can be
dependent on many criteria, such as administrative
domains or network topology. We believe that the
mechanism should support the existence of multi-
ple hierarchies, and actual usage should be based
on policy. Individual servers can choose to par-
ticipate in more than one hierarchy by keeping
multiple routing tables, one for each hierarchy.

To prevent upper-level servers in the hierarchy
from being overwhelmed by update or query
traffic, the SDS architecture filters information
while it propagates upward. In particular, the in-
formation is summarized in a way that allows
queries to determine which, if any, branch contains
potential matches.

To accomplish this lossy aggregation, we use
hash summarization, where information is sum-
marized using a unique N-to-M mapping of data
values. Complicating this procedure is the SDS’
use of the subset query model, where matching
documents can be identified by a partial list of
service characteristics. Our solution is to hash a
limited number of tag subsets, each subset con-
taining a single tag or a cross-product of two tags.
This limits computation required for summariza-
tion. To address the issue of storage space for
summarizations, we use Bloom filters [5]. Bloom
filters collapse hashed summarizations into a fixed-
size table, accepting greater possibility of false
positives in return for less storage requirements.

In summary, SDS servers dynamically organize
themselves into potentially multiple hierarchies for
data partitioning and query routing. Each server
uses multiple hash functions on various subsets of
tags in service announcements, and uses the results
to set bits in a bit vector. Servers which are internal
nodes in the hierarchy combine bit vectors from
itself and its children servers, and associates the
result with this branch at its parent node. After
receiving a query, each server checks its own bit
vector for a match, and failing that checks its chil-
dren vectors to determine which branch to forward
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the query to. A server resolves a query against the
vector by multiply hashing it and checking if all the
matching bits are set in the bit-vector. A missing bit
guarantees a true miss, while a match could signal
either a false positive or a true hit.

The distribution of data across the wide area
exposes a trade-off between consistency and per-
formance. Strict consistency is difficult to achieve
in the face of frequent updates, given the wide
area’s constraints on network bandwidth, trans-
mission latency, and the greater possibility of
network partitions. Therefore, the SDS system
provides loose consistency guarantees about ser-
vice location information across the wide area.

6.3. Performance

We have measured the performance of a single
SDS server on an Intel Pentium IT 350 Mhz with
128 MB RAM, running on Linux 2.0.36 using the
Blackdown JDK 1.1.7 and the TYA JIT compiler.
The results are presented in Table 1. This table
shows that the primary sources of latency are the
authenticated transport connections and capability
checking using the Cryptix Java security library.
We expect both of these components will decrease
significantly as a result of ongoing research. Fur-
thermore, the XML query processing is shown to
scale logarithmically with the size of the data set
[51]. Finally, using these performance numbers, we
estimate that a single SDS server (using off-the-
shelf components) can handle a user community of
about 500 clients sending queries at a rate of of
one query per minute per client.

Table 1
Secure query latency breakdown

Description Latency (ms)
Query encryption (client-side) 5.3
Query decryption (server-side) 5.2
Authenticated transport overhead 18.3
Query XML processing 9.8
Capability checking 18.0
Query result encryption (server-side) 5.6
Query result decryption (client-side) 5.4
Query unaccounted overhead 14.4
Total (secure XML query) 82.0

7. Paths: composition of services across the wide-
area

The primary goal of paths is to facilitate the
composition of services. To be most useful, the
infrastructure should attempt to automate as
many parts of the path creation process as possi-
ble. In our design, an automatic path creation
(APC) facility automates the task of finding paths
between system components, creating the network
connections between components, fine tuning the
performance of the data flow, and handling error
conditions. Whenever possible, the APC facility
protects users from the failure of individual path
components or communication links. The ideal
situation would be to provide the illusion that the
user is accessing a single robust service providing
the composed functionality. Because the APC fa-
cility handles large numbers of concurrent users,
we designed its path construction algorithms to
scale well as the number of components increases,
even though the number of possible paths may
grow exponentially as components are added.

A path comprises of a sequence of operators
that perform computations on data and connectors
that provide protocol translations between opera-
tors. A connector is a channel through which op-
erators can pass application data units (ADUs).
The connector hides potential differences in net-
work protocols from the operators, and allows
them to communicate as long as the output data
type of the downstream operator matches the in-
put data type of the upstream operator. Each
connector is characterized by a specific transport
protocol.

Operators perform computation on data flow-
ing along the path. Operators are strongly typed:
they have a clear definition of the input they accept
and the outputs they produce. Operators have
various attributes such as supported communica-
tion protocols, computational requirements, or
required external data (e.g., a remote database). In
addition, operators have associated cost metrics,
which describe the run-time performance of the
operator and are used for optimization during
path creation. The type and attributes for each
operator are combined to form an XML descrip-
tion of the operator. These descriptions are used to
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determine which combinations of operators could
make a valid path.

The Ninja architecture provides two classes of
operators: long-lived and dynamically created.
Long-lived operators are standard Ninja services,
and hence support both the data persistence and
fault-tolerance properties previously discussed for
services. These are registered with and located
through the service discovery service (SDS). Dy-
namically created operators are light-weight,
short-lived transformation elements created by the
APC facility as required. These operators, which
run in active proxies, have only soft-state and
hence can be simply restarted if the active proxy
fails.

While the reliability of both long-lived and dy-
namic operators helps to guarantee that a path can
be reconstructed when a failure occurs, this does
not safeguard against the loss of data that was
already in the path when the failure occurred.
Hence, applications that use paths must provide
their own mechanisms for guaranteed or in-order
data delivery if this is required.

7.1. An example of a path

As a motivating example, consider a map ser-
vice that provides driving directions in response to
a user-specified address. This example illustrates
the composition of two operators with a service,
and shows how active proxies that are selected by
the path creation process are used to perform
protocol and data format translations between
clients and services. To allow access to the overall
audio driving direction service from a cell phone,
the APC facility might create a path as follows:
1. The user initiates a call from a cellular phone.

The user speaks the address to which she wishes

to get driving directions. An RTP-based audio

connector is used to send this audio to the first
operator in the path.

2. A speech-to-text operator, running in an active
proxy, is used to convert the spoken audio into
structured text using a grammar specifically
chosen for this context (address input). The
structured text emitted from this operator is
passed along a TCP-based reliable bytestream
connector to a map service.

3. A map service, running in a base, receives the
address, and returns structured text represent-
ing driving directions to the specified address.
These directions are passed along a TCP-based
reliable bytestream connector to the next oper-
ator in the path.

4. A text-to-speech translator, running in the same
active proxy as the speech-to-text operator,
transforms the textual driving directions into
audio. An RTP-based audio connector is used
to send this audio to the user’s cell phone.

5. The user hears the driving directions being
spoken to her over her phone.

7.2. Path construction

To create a Ninja path, a user provides the APC
facility a specification of the endpoints of the
required path, a partially ordered list of operators
that must be included in the path, and an accept-
able range of costs for the path in terms of latency,
computation or memory requirements. This in-
formation is used to construct an optimal path for
the user’s specific requirements. The path con-
struction process consists of four steps. As shown
in Fig. 11, path construction is a process of con-
tinuous feedback and optimization. The details of
each step are described below.

Step 1: Logical path creation. A logical path
consists of an ordered sequence of operators that

Logical Path Creation

l

Physical Path Creation

l

Path Instantiation and Execution

l

Path Tear-Down

Fig. 11. Path construction process. Path execution is an iterative
process of optimization. The Ninja APC facility guarantees the
availability and fault-tolerance of a constructed path by re-
building its physical or logical path.
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are joined with connectors. During logical path
creation, the APC facility searches through the
XML descriptions of the operators, to find valid
sequences that could perform the computation
requested by the user. The result of logical path
creation is a list of possible operator sequences.
Note that since some operators may be commu-
tative (image format transcoders, for example), the
space of all possible logical paths is large. Hence,
only a small number of logical paths are consid-
ered initially.

Step 2: Physical path creation. A physical path
is a mapping of a particular logical path onto
physical nodes which execute the operators. Nodes
for long-lived operators are chosen from the
known services that provide the desired function-
ality, as located using the SDS. Nodes for short-
lived operators are chosen according to the
computational capabilities of the node, and the
cost of using that node in the path. The APC fa-
cility constructs a physical path from a logical path
by finding the lowest cost nodes that meet the
user’s requirements.

Step 3: Path instantiation, and execution. Once
the nodes of the path have been selected, the APC
facility starts any required dynamic operators, and
sets up appropriate connectors between the vari-
ous operators. Once all nodes in the path are set
up, data flow is started. In addition, a control
channel (used for reporting of error conditions and
performance information) is established between
the operator nodes and the APC facility. During
the lifetime of the path, the APC facility actively
monitors the operator nodes to make sure that
they are functional. Operator nodes report prob-
lems to the APC facility about their neighboring
nodes in the path, so that the path is repaired when
necessary. The APC facility monitors the perfor-
mance of the path, and reroutes the data flow if
new conditions make the original path suboptimal.
The control path is used for exception handling,
controlling parameters of path components,
monitoring and analyzing path performance; thus,
it needs to be independent of data paths and be
highly robust.

Step 4: Path tear-down. When a path is no
longer needed, the user informs the APC facility
that it should be removed. The APC facility then

stops the data flow, removes connectors, and shuts
down any dynamic operators. As a performance
optimization, the APC facility may cache com-
monly used logical and physical paths for reuse at
a later time.

7.3. APC implementation and evaluation

We have developed an initial prototype of the
APC facility that supports both long-lived and
dynamic operators. In addition, we have a special
class of dynamic operators that can be used to
wrap existing services. This allows the APC system
to make use of older services that cannot com-
municate directly with our connectors.

Each operator has a reference to an output and
input connector that speaks a specific transport
protocol. All connectors implement a common
Java interface. To interact with previous and
subsequent operators in the operator chain, each
operator invokes read and write methods of this
interface to receive its input data and send its
output data. TCP, UDP, and RTP connectors are
supported in the current prototype.

Our current implementation encompasses the
full range of path creation described previously.
Logical paths are created by searching the XML
descriptions of the available operators to find the
smallest number of operators that can perform the
desired data flow. A physical path is then selected
by placing operators on the least loaded nodes of
the network.

Machine failures are automatically detected by
the APC service, and running operators are re-
started on other nodes. Fault detection is achieved
by either time-out of a heartbeat beacon or by
catching an I/O exception when reading or writing
data from or to the failed machine. Our prototype
does not presently exploit the possibilities for
performance tuning through dynamic reconstruc-
tion of paths.

8. Example services
Having completed the description of the Ninja

architecture, in this section of the paper we de-
scribe a number of interesting applications that we
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have built on top of it. These applications dem-
onstrate the capability of the Ninja architecture to
facilitate the simple construction of robust, scal-
able services that are accessible by a diversity of
devices. This illustrates the opportunity that our
architecture provides for the widespread innova-
tion of both services and devices.

8.1. The Ninja Jukebox

The Ninja Jukebox [18] was an early applica-
tion built using our architecture, and it demon-
strates some of our platform’s key features. The
Jukebox allows a community of users to build a
distributed repository of digital music, and pro-
vides a collaborative filtering mechanism based on
users’ music preferences. Cluster nodes are har-
nessed to rip MP3 files from their local CD-ROM
drives, and to act as servers for streaming MP3 to
clients. One node acts as the music directory, and
maintains a soft-state index of the songs published
by each cluster node; the Jukebox client applica-
tion contacts the directory to obtain a list of songs,
and streams MP3 directly from the appropriate
node using HTTP.

The Ninja Jukebox is based on MultiSpace [21],
an early design prototype of the base service
platform. MultiSpace nodes, each running a JVM,
communicate through the use of NinjaRMI, an
extensible variant of Java remote method invoca-
tion [38]. Each component in the Jukebox appli-
cation exports a NinjaRMI interface which is
invoked either internally to the cluster or exter-
nally by the Jukebox client application (which also
makes use of NinjaRMI). NinjaRMI provides
support for strong authentication and encryption,
which is used to control access to the Jukebox
service. Each song in the Jukebox can have an
associated ACL authorizing a particular set of
users to listen to it.

Constructing this application as a set of
strongly typed, distributed components greatly
simplified service construction and facilitated
evolution, as new components could be added to
the service as needed. An example of service evo-
lution was our addition of the Jukebox query en-
gine [45], which allows users to search for music in
the Jukebox based on musical similarity between

songs. The user provides a query song and a set of
parameters to use for the search, as well as the
number of results to return; the query engine re-
turns the songs in the Jukebox which sound the
most similar to the query song. The search is
based on a k-nearest-neighbor search in a multi-
dimensional space of features previously extracted
from each song. The query engine runs on the
same MultiSpace platform as the Jukebox itself,
and its user interface is integrated into the Juke-
box client.

8.2. An active proxy framework for accessing
services through untrusted devices

A more general service that we have imple-
mented is an active proxy framework that pro-
vides secure multi-modal access to Internet
services from units [23]. Consider the case of us-
ers accessing their stock trading accounts from
public access terminals. Instead of relying on the
terminal to protect their secure information, the
users can direct private or sensitive information
such as portfolio values or account numbers to
their personal PDA, while using the rich GUI
capabilities of the public terminal to initiate re-
quests and display generic stock information
(e.g., stock price fluctuations and historical
graphs). Users initiate trading operations through
the untrusted public terminals, but then confirm
them using their trusted portable devices. Net-
work connections to the users’ PDAs are pro-
vided either by the environment, such as with
kiosks with infrared network connections, or by
the devices themselves, for example, by directly
initiating a connection from a wireless data en-
abled PDA.

The proxy is implemented as a collection of
vSpace workers that abstract the functionality of
security adaptation, service adaptation, and device
fusion. By combining generic content and security
transformation functions with service-specific
rules, the proxy architecture decouples device ca-
pabilities from service requirements and simplifies
the addition of new devices and services. The ser-
vice uses XML as a standard data representation;
one vSpace worker transforms requests from
the untrusted access device into an XML
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representation. Another worker provides access
control filtering on these requests, possibly inject-
ing secure information into the request: for ex-
ample, this worker may convert a one-time
password provided by the user through the un-
trusted terminal into a password that must be
supplied to the service being accessed.

A third worker transforms the request from its
generic XML representation into whatever proto-
col is necessary to access the service. For example,
if the service is web-based, this worker will convert
the XML into a HTML form to be submitted to
the service’s web server. This worker receives the
content returned from the service, and transforms
it back into XML. A fourth worker performs a
sequence of filtering operations on the data in
order to remove any sensitive information that
should not be revealed to the untrusted device. A
final worker is used to transform this filtered XML
into whatever protocol and data format is needed
to render the content on the untrusted terminal.
This final XML transformation is driven using
device-specific XSL style sheets.

The framework currently allows access to both
the Datek Online [12] and YahooContest [48] stock
trading services, and we are currently adding access
to a HTML-based mail service. Adding support for
a new service merely requires authoring a script to
convert the service’s content into an XML repre-
sentation. For example, the YahooContest service
consists of half a dozen scripts each of which are
approximately 250 lines or less. Rendering content
for different client formats requires authoring the
appropriate XSL style sheets. Our example stock
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services consist of half a dozen style sheets for each
device format, each ranging from 50 to 300 lines in
length. Fig. 12 shows the output of the Yahoo-
Contest service rendered as WML for a WAP
browser running on a trusted Palm Pilot. In this
example, because the device is trusted, sensitive
information such as the number of owned shares
has not been removed by the proxy. In Fig. 13, we
show the output of the Datek trading service ren-
dered as HTML on an untrusted Web browsing
kiosk; note in particular that sensitive information
such as account numbers and the number of pur-
chased shares have been removed.

8.3. NinjaMail

Electronic mail was one of the “killer apps” of
the early Internet, and even today, the number of
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Fig. 14. The NinjaMail architecture.

users with e-mail access is growing exponentially.
At the same time, these users are expecting more
complex functionality such as embedded multi-
media and anytime/anywhere access. These two
trends have implications on the requirements of
modern e-mail servers. Hotmail alone has over 61
million active users [33], and if they offered just
50 MB worth of storage to each user, their
servers would have to handle over 3 petabytes of
data.

The goal of the NinjaMail [42] project is to
build a scalable and feature-rich e-mail service on
top of Ninja. NinjaMail was built to act as a
general e-mail infrastructure which other applica-
tions and services could use to provide more spe-
cific functionality, as depicted in Fig. 14. This
loose coupling of the separate components allows
for more flexibility and extensibility than tradi-
tional e-mail servers.

At NinjaMail’s core, the MailStore module
handles storage operations such as saving and
retrieving messages, pushing out notification of
e-mail events, updating message metadata, and
performing simple per-user message metadata
searches. A message’s metadata represents its
mutable attributes which are used to record its
flags and current folder. Access modules support
specific communication methods between users
and NinjaMail, including an SMTP module for
pushing messages into the MailStore and POP and
HTML modules for user message access.

Each of the above modules is a separate worker
running in the cluster, with scalability being
achieved by running multiple clones of the worker.
We found that decomposing the NinjaMail system

into a set of workers to be a natural programming
model and the typed task dispatching allowed the
components to be easily composed. We also cre-
ated an event mechanism that allowed extension
modules to register with the MailStore service to
receive notifications when particular events occur
such as e-mail receipt. This allowed for very di-
verse services to be built, such as an instant mes-
saging notifier of new e-mail.

8.4. Sanctio

Recently, there has been an ongoing contro-
versy over access rights to proprietary instant
messaging networks, such as AOL’s AIM network
[1]. Many companies have tried to compose their
own services with these existing networks, how-
ever, the owners of the proprietary networks have
attempted to prevent such composition, as it
diminishes their perceived market penetration.

We have built a service called Sanctio, which is
an instant messaging gateway that provides pro-
tocol translation between popular instant mes-
saging protocols (such as Mirabilis’ ICQ and
AOL’s AIM), conventional e-mail, and voice
messaging over cellular telephones. Sanctio obvi-
ates this controversy by bridging together these
previously proprietary networks into an instant
messaging internetwork. Sanctio runs on a vSpace
base, and acts as a middleman between all of these
messaging protocols, routing and translating
messages between the networks (Fig. 15). In ad-
dition to protocol translation, Sanctio also can
transform the content of messages. We have built a
“Web scraper” that allows us to compose Alta-
Vista’s BabelFish natural language translation
service with Sanctio, and thus the service can
perform language translation (such as English to
French) as well as protocol translation. A Spanish
speaking ICQ user can send a message to an En-
glish speaking AIM user, with Sanctio providing
both language and protocol translations.

Users can take advantage of unmodified com-
mercial client application software in order to use
Sanctio, or they can use software that we have
constructed for mobile devices such as Palm Pilots.
This software interacts with the Sanctio service
through an active proxy. The proxy presents a very
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Fig. 15. Sanctio messaging proxy. The Sanctio messaging proxy service is composed of language translation and instant message
protocol translation workers in a base. Sanctio allows unmodified instant messaging clients that speak different protocols to com-
municate with each other; Sanctio can also perform natural language translation on the text of the messages.

simple text-based messaging protocol to the Palm
Pilot, but interacts with Sanctio using the more
sophisticated AIM or ICQ procotols.

Because a user of the service may be reached on
a number of different addresses (potentially one
for each of the networks that Sanctio can com-
municate with), Sanctio must keep a large table of
bindings between users and their current transport
addresses on these networks. We used a distrib-
uted hash table DDS for this purpose.

9. Related work

A number of projects share aspects of the Ninja
vision of seamlessly interconnecting devices and
Internet services. Related work can generally be
characterized as addressing specific aspects of this
problem space (such as supporting scalable ser-
vices or embedding intelligence in the network),
rather than taking Ninja’s vertical approach to
building a general-purpose Internet services plat-
form. As the number of related projects in this
domain is extremely large — spanning operating
systems, programming languages, networks, em-
bedded systems, and distributed computing plat-
forms — we limit our discussion here to those
projects which have taken a particularly comple-
mentary approach to the Ninja system design.

Flexible middleware systems, which support
distributed computing across heterogeneous re-
sources, are directly related to Ninja’s goal of
tying together Internet services with diverse small

devices. CORBA [40] and DCOM [14] provide
platform-independent,  object-based  network
communication, although both systems are de-
signed for tightly coupled distributed applications
and do not directly support composition and
aggregation of components. Jini [39,43] takes a
Java-centric view, exploiting bytecode mobility to
deliver stub code which implements a private
communication protocol between client and ser-
vice, stubs export a programming model based on
remote method invocation (RMI) [38]. Although
Jini’s literature describes a holistic distributed
computing model not unlike that of Ninja, the
system has been developed mainly for use within
a workgroup, and does not provide security or
scalability for the wide area. eSpeak [22] is
another Java-based middleware system which in-
tends to scale to the wide area, and to integrate
PKI into its nonstandard messaging layer. Nei-
ther system addresses service scalability and fault-
tolerance, or access from impoverished devices
which cannot run a Java-based communication
protocol.

The goals of the Ninja Base environment are
reflected by various application servers, including
IBM WebSphere [24] and BEA Weblogic [4].
These systems strive to simplify the construction of
scalable, fault-tolerant Internet services, generally
requiring that applications be constructed as a set
of Java components using an interface such as
Enterprise Java Beans (EJB) [37]. EJB components
are expected to be stateless or to manage their own
state persistence. EJB components usually interact
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with a database to achieve the latter. vSpace differs
from these application servers mainly by mandat-
ing an event-driven programming style (which
facilitates high concurrency) and through the use
of the DDS layer for persistence. The Ninja Base
environment was inspired by earlier work on
TACC [15] and SNS [9], both cluster-based In-
ternet service platforms.

Harnessing intelligence in the network to
transform and aggregate data across services has
been investigated by several projects. Active net-
works [47] allow code to be injected into network
routers to deploy new network protocols, imple-
ment traffic shaping, and perform packet filtering.
An important distinction between these projects
and Ninja’s active proxies is the level at which data
processing occurs; active networks operate at the
transport or packet level, while active proxies op-
erate using higher level application semantics. As
such, active proxies are not solely intended to
implement protocols or perform packet-level op-
erations; rather, they are used to perform service
composition and aggregation, as well as soft-state
transformations (such as HTML filtering, as
demonstrated by the security proxy). While much
of the work on mobile agents [28] has focused on
supporting distributed artificial intelligence, active
proxies share many of the same systems-level
concerns, such as code mobility, naming, security,
and coordination.

Many projects have used transcoding to adapt
service content to better suit small devices
[6,15,29,34-36,49,50]. Additionally, a number of
projects have attempted to develop universal in-
terfaces for large classes of devices, including the
recent WAP protocol stack [44]. Instead of as-
suming that a single standard will be adopted by
all devices, the Ninja architecture allows multiple
standards to be bridged by using active proxies as
transformational intermediaries.

There are several additional technologies that
we would like to explore as interesting examples of
units. For example, Java Rings [11] and smart
cards allow minimal computation, communica-
tion, and storage, but have no user interfaces.
DIMM PC devices (matchbox-sized PCs on a
single chip) could be used as mobile, computa-
tionally powerful devices that lack a user interface.

Additionally, we believe that universal Plug and
Play and Jini-based devices could be easily inte-
grated into the Ninja architecture.

10. Discussion and future directions

If Ninja succeeds in enabling connectivity be-
tween Internet services and arbitrarily small de-
vices, a range of new research directions arise. The
Ninja goal of moving intelligence into the network
infrastructure, and opening up the infrastructure
to allow anyone to push new components into it,
raises questions about management, security, and
service composition.

The first important concern is how to manage
resources in a highly dynamic, decentralized net-
work of active proxies. Operators should not be
allowed to consume arbitrary amounts of network
bandwidth, CPU, or memory; however, such re-
strictions cannot be made only on a per-site basis,
as a given operator may consume many aggregate
resources across many active proxies. Otherwise,
malicious operators could be used to launch dis-
tributed denial of service attacks against particular
bases as well as the network itself. In the same
vein, the infrastructure should prevent abuses of
its content delivery mechanisms for unsolicited
advertising or “spam” — already there are reports
of people receiving unwanted advertisements via
text paging to cellphones. If Ninja makes this
problem worse, rather than better, the technology
will not be adopted in the wide scale, or the in-
frastructure will remain closed.

New business models emerge in the world of
ubiquitous network-based services. Today’s model
of funding Websites through advertising revenue is
inappropriate when services capture bits rather
than eyeballs. Subscription and micropayment-
based models are possible alternatives. In either
case, retaining user privacy is an important
concern as data and payments flow across the in-
frastructure. We envision a new ‘‘service market-
place” where both individual operators as well as
entire vertically integrated services are made
available on a per-use or subscription basis. An-
other interesting model is that of a computational
economy [31], where active proxies, services, and
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user agents participate in an automated market-
place where the commodities are CPU cycles,
memory, and bandwidth. Service authors earn
revenue by making their service available to oth-
ers, and active proxies earn revenue by hosting
services on behalf of users. Apart from the busi-
ness implications, computational economies can
be used to implement resource management, load
balancing, and quality-of-service contracts.

Accessing powerful Internet services from small
devices raises new challenges for user interface
design. Ideally, service-to-device integration will
be seamless. When failures do occur, however, the
user may need some way to inspect or control the
path of network components producing the fault.
Exerting control over a network of active proxies
from a device as limited as a text pager is difficult
at best. Currently, networked devices are bound to
a particular service; for example, a cellphone is
used primarily for making phone calls. If the Ninja
vision is realized, devices will become more ver-
satile and the choices for using them more varied.
Users will need some way to select between ser-
vices and perhaps control a user profile used by
those services.

Perhaps the largest challenge to face is that of
automatically composing service components to
meet the needs of particular devices. Expressing
the transformation, caching, or aggregation
properties of a Ninja operator in a type system is
simple and potentially allows operators to be
automatically chained into a path. However, the
types must be expressive enough to capture the
relevant semantics of an operator. For example,
an English-to-French translation operator may
take type English text as input, and French
text as output; however, this alone does not
imply translation between the two, as the opera-
tor might always output Je ne sais pas traduire
cette texte. Apart from strict type-matching, op-
erator selection also depends upon consideration
of an operator’s quality, performance, and cost.
Automatic path creation becomes a problem of
balancing user requirements with other system
demands, such as resource availability. Perform-
ing this operation efficiently and in a decentral-
ized manner suggests several avenues for future
research.

11. Conclusions

The Ninja architecture represents an important
first step towards opening up the intrastructure of
scalable, robust, adaptive Internet services. By
opening the infrastructure, Ninja hopes to reclaim
the distributed innovation that was responsible for
the unprecedented success and widespread adop-
tion of the Internet in the form of the world-wide
web. Unlike the today’s web, the service landscape
envisioned by Ninja is one of active services and
extremely diverse, mobile devices.

In this paper, we described the essential ele-
ments of this open architecture: robust service
environments on clusters of workstations (bases),
diverse devices (units), adaptive intermediaries to
isolate services from units (active proxies), and an
abstraction for the composition of these three el-
ements (paths). In addition to describing our de-
sign and implementation of these components, we
presented four innovative services that exploit the
capabilities offered by this open infrastructure.
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