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Abstract

While web pages sent over HTTP have no integrity
guarantees, it is commonly assumed that such pages are
not modified in transit. In this paper, we provide ev-
idence of surprisingly widespread and diverse changes
made to web pages between the server and client. Over
1% of web clients in our study received altered pages,
and we show that these changes often have undesirable
consequences for web publishers or end users. Such
changes include popup blocking scripts inserted by client
software, advertisements injected by ISPs, and even ma-
licious code likely inserted by malware using ARP poi-
soning. Additionally, we find that changes introduced
by client software can inadvertently cause harm, such as
introducing cross-site scripting vulnerabilities into most
pages a client visits. To help publishers understand
and react appropriately to such changes, we introduce
web tripwires—client-side JavaScript code that can de-
tect most in-flight modifications to a web page. We dis-
cuss several web tripwire designs intended to provide ba-
sic integrity checks for web servers. We show that they
are more flexible and less expensive than switching to
HTTPS and do not require changes to current browsers.

1 Introduction

Most web pages are sent from servers to clients using
HTTP. It is well-known that ISPs or other parties be-
tween the server and the client could modify this content
in flight; however, the common assumption is that, bar-
ring a few types of client proxies, no such modifications
take place. In this paper, we show that this assumption is
false. Not only do a large number and variety of in-flight
modifications occur to web pages, but they often result
in significant problems for users or publishers or both.

We present the results of a measurement study to bet-
ter understand what in-flight changes are made to web
pages in practice, and the implications these changes

have for end users and web publishers. In the study, our
web server recorded any changes made to the HTML
code of our web page for visitors from over 50,000
unique IP addresses.

Changes to our page were seen by 1.3% of the client
IP addresses in our sample, drawn from a population of
technically oriented users. We observed many types of
changes caused by agents with diverse incentives. For
example, ISPs seek revenue by injecting ads, end users
seek to filter annoyances like ads and popups, and mal-
ware authors seek to spread worms by injecting exploits.

Many of these changes are undesirable for publish-
ers or users. At a minimum, the injection or removal of
ads by ISPs or proxies can impact the revenue stream of
a web publisher, annoy the end user, or potentially ex-
pose the end user to privacy violations. Worse, we find
that several types of modifications introduce bugs or even
vulnerabilities into many or all of the web pages a user
visits—pages that might otherwise be safe and bug-free.
We demonstrate the threats these modifications pose by
building successful exploits of the vulnerabilities.

These discoveries reveal a diverse ecosystem of
agents that modify web pages. Because many of these
modifications have negative consequences, publishers
may have incentives to detect or even prevent them from
occurring. Detection can help publishers notify users that
a page might not appear as intended, take action against
those who make unwanted changes, debug problems due
to modified pages, and potentially deter some types of
changes. Preventing modifications may sometimes be
important, but there may also be types of page changes
worth allowing. For example, some enterprise proxies
modify web pages to increase client security, such as
Blue Coat WebFilter [9] and BrowserShield [30].

HTTPS offers a strong, but rigid and costly, solution
for these issues. HTTPS encrypts web traffic to prevent
in-flight modifications, though proxies that act as HTTPS
endpoints may still alter pages without any indication to
the server. Encryption can prevent even beneficial page
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Figure 1: Web tripwires can detect any modifications
to the HTML source code of a page made between the
server and the browser.

changes, as well as web caching, compression, and other
useful services that rely on the open nature of HTTP.

As a result, we propose that concerned web publish-
ers adopt web tripwires on their pages to help understand
and react to any changes made in flight. Web tripwires
are client-side JavaScript code that can detect most mod-
ifications to unencrypted web pages. Web tripwires are
not secure and cannot detect all changes, but they can
be made robust in practice. We present several designs
for web tripwires and show that they can be deployed
at a lower cost than HTTPS, do not require changes to
web browsers, and support various policy decisions for
reacting to page modifications. They provide web servers
with practical integrity checks against a variety of unde-
sirable or dangerous modifications.

The rest of this paper is organized as follows. Sec-
tion 2 describes our measurement study of in-flight page
changes and discusses the implications of our findings.
In Section 3, we compare several web tripwire im-
plementation strategies that allow publishers to detect
changes to their own pages. We evaluate the costs of
web tripwires and their robustness to adversaries in Sec-
tion 4. Section 5 illustrates how our web tripwire toolkit
is easy to deploy and can support a variety of policies. Fi-
nally, we present related work in Section 6 and conclude
in Section 7.

2 In-Flight Modifications

Despite the lack of integrity guarantees in HTTP, most
web publishers and end users expect web pages to arrive
at the client as the publisher intended. Using measure-
ments of a large client population, we find that this is
not the case. ISPs, enterprises, end users, and malware
authors all have incentives to modify pages, and we find
evidence that each of these parties does so in practice.
These changes often have undesirable consequences for
publishers or users, including injected advertisements,
broken pages, and exploitable vulnerabilities. These re-
sults demonstrate the precariousness of today’s web, and
that it can be dangerous to ignore the absence of integrity
protection for web content.
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Figure 2: If a web tripwire detects a change, it displays a
message to the user, as in the screenshot on the right.

To understand the scope of the problem, we designed
a measurement study to test whether web pages arrive
at the client unchanged. We developed a web page that
could detect changes to its HTML source code made by
an agent between the server and the browser, and we at-
tracted a diverse set of clients to the page to test many
paths through the network. Our study seeks to answer
two key questions:

• What kinds of page modifications occur in practice,
and how frequently?

• Do the changes have unforeseen consequences?

We found that clients at over 1% of 50,000 IP ad-
dresses saw some change to the page, many with nega-
tive consequences. In the rest of this section, we discuss
our measurement technique and the diverse ecosystem of
page modifications that we observed.

2.1 Measurement Infrastructure

Our measurement study identifies changes made to our
web page between the web server and the client’s
browser, using code delivered by the server to the
browser. This technique allows us to gather results from
a large number of clients in diverse locations, although it
may not detect agents that do not modify every page.

Technology. Our measurement tool consists of a web
page with JavaScript code that detects page modifica-
tions. We refer to this code as a web tripwire because
it can be unobtrusively placed on a web page and trig-
gered if it detects a change. As shown in Figure 1,
our web tripwire detects changes to HTML source code
made anywhere between the server and browser, includ-
ing those caused by ISPs, enterprise firewalls, and client-
side proxies. We did not design the web tripwire to de-
tect changes made by browser extensions, because exten-
sions are effectively part of the browser, and we believe
they are likely installed with the knowledge and consent
of the user. In practice, browser extensions do not trigger
the tripwire because they operate on the browser’s inter-
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nal representation of the page and not the HTML source
code itself.

Our web tripwire is implemented as JavaScript code
that runs when the page is loaded in the client’s browser.
It reports any detected changes to the server and displays
a message to the user, as seen in Figure 2. Our imple-
mentation can display the difference between the actual
and expected contents of the page, and it can collect ad-
ditional feedback from the user about her environment.
Further implementation details can be found in Section 3.

We note two caveats for this technique. First, it may
have false negatives. Modifying agents may choose to
only alter certain pages, excluding those with our web
tripwires. We do not expect any false positives, though,
so our results are a lower bound for the actual number of
page modifications.1 Second, our technique is not cryp-
tographically secure. An adversarial agent could remove
or tamper with our scripts to evade detection. For this
study, we find it unlikely that such tampering would be
widespread, and we discuss how to address adversarial
agents in Section 4.2.

Realism. We sought to create a realistic setting for our
measurement page, to increase the likelihood that agents
might modify it. We included HTML tags from web au-
thoring software, randomly generated text, and keywords
with links.

We were also guided by initial reports of ISPs that
injected advertisements into their clients’ web traffic,
using services from NebuAd [5]. These reports sug-
gested that only pages from .com top-level domains
(TLDs) were affected. To test this, our measurement
page hosts several frames with identical web tripwires,
each served from a different TLD. These frames are
served from vancouver.cs.washington.edu,
uwsecurity.com, uwprivacy.org, uwcse.ca,
uwsystems.net, and 128.208.6.241.

We introduced additional frames during the ex-
periment, to determine if any agents were at-
tempting to “whitelist” the domains we had se-
lected to evade detection. After our measure-
ment page started receiving large numbers of visi-
tors, we added frames at www.happyblimp.com and
www2.happyblimp.com.

In the end, we found that most changes were made
indiscriminately, although some NebuAd injections were
.com-specific and other NebuAd injections targeted par-
ticular TLDs with an unknown pattern.

Exposure. To get a representative view of in-flight page
modifications, we sought visitors from as many vantage
points as possible. Similar studies such as the ANA

1In principle, a false positive could occur if an adversary forges a
web tripwire alarm. Since this was a short-term measurement study, we
do not expect that we encountered any adversaries or false positives.

Spoofer Project [8] attracted thousands of participants by
posting to the Slashdot news web site, so we also pursued
this approach.

Although our first submission to Slashdot was not
successful, we were able to circulate a story among other
sites via Dave Farber’s “Interesting People” mailing list.
This led another reader to successfully post the story to
Slashdot.

Similarly, we attracted traffic from Digg, a user-driven
news web site. We encouraged readers of our page to aid
our experiment by voting for our story on Digg, promot-
ing it within the site’s collaborative filter. Within a day,
our story reached the front page of Digg.

2.2 Results Overview

On July 24, 2007, our measurement tool went live at
http://vancouver.cs.washington.edu, and
it appeared on the front pages of Slashdot and Digg
(among other technology news sites) the following day.
The tool remains online, but our analysis covers data col-
lected for the first 20 days, which encompasses the vast
majority of the traffic we received.

We collected test results from clients at 50,171 unique
IP addresses. 9,507 of these clients were referred from
Slashdot, 21,333 were referred from Digg, and another
705 were referred from both Slashdot and Digg. These
high numbers of referrals indicate that these sites were
essential to our experiment’s success.

The modifications we observed are summarized in Ta-
ble 1. At a high level, clients at 657 IP addresses re-
ported modifications to at least one of the frames on the
page. About 70% of the modifications were caused by
client-side proxies such as popup blockers, but 46 IP
addresses did report changes that appeared to be inten-
tionally caused by their ISP. We also discovered that the
proxies used at 125 addresses left our page vulnerable
to cross-site scripting attacks, while 3 addresses were af-
fected by client-based malware.

2.3 Modification Diversity

We found a surprisingly diverse set of changes made
to our measurement page. Importantly, these changes
were often misaligned with the goals of the publisher
or the end user. Publishers wish to deliver their content
to users, possibly with a revenue stream from advertise-
ments. Users wish to receive the content safely, with few
annoyances. However, the parties in Figure 1, including
ISPs, enterprises, users, and also malware authors, have
incentives to modify web pages in transit. We found that
these parties do modify pages in practice, often adversely
impacting the user or publisher. We offer a high level
survey of these changes and incentives below.
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Popup Blocker 277 3 Zone Alarm (210), CA Personal Firewall (17),

Sunbelt Popup Killer (12)
Ad Blocker 188 3 Ad Muncher (99), Privoxy (58), Proxomitron (25)
Problem in Transit 118 3 Blank Page (107), Incomplete Page (7)
Compression 30 3 bmi.js (23), Newlines removed (6), Distillation (1)
Security or Privacy 17 3 3 Blue Coat (15), The Cloak (1), AnchorFree (1)
Ad Injector 16 3 MetroFi (6), FairEagle (5), LokBox (1), Front Porch (1),

PerfTech (1), Edge Technologies (1), knects.net (1)
Meta Tag Changes 12 3 3 Removed meta tags (8), Reformatted meta tags (4)
Malware 3 3 W32.Arpiframe (2), Adware.LinkMaker (1)
Miscellaneous 3 3 New background color (1), Mark of the Web (1)

Table 1: Categories of observed page modifications, the number of client IP addresses affected by each, the likely
parties responsible, and examples. Each example is followed by the number of IP addresses that reported it; examples
listed in bold introduced defects or vulnerabilities into our page.

ISPs. ISPs have at least two incentives to modify web
traffic: to generate revenue from advertising and to re-
duce traffic using compression. Injected advertisements
have negative impact for many users, who view them as
annoyances.

In our results, we discovered several distinct ISPs that
appeared to insert ad-related scripts into our measure-
ment page. Several companies offer to partner with ISPs
by providing them appliances that inject such ads. For
example, we saw 5 IP addresses that received injected
code from NebuAd’s servers [2]. Traceroutes suggested
that these occurred on ISPs including Red Moon, Mesa
Networks, and XO, as well as an IP address belong-
ing to NebuAd itself. Other frequently observed ad in-
jections were caused by MetroFi, a company that pro-
vides free wireless networks in which all web pages are
augmented with ads. We also observed single IP ad-
dresses affected by other similar companies, including
LokBox, Front Porch, PerfTech, Edge Technologies, and
knects.net.

Notably, these companies often claim to inject ads
based on behavioral analysis, so that they are targeted
to the pages a user has visited. Such ads may leak pri-
vate information about a user’s browsing history to web
servers the user visits. For example, a server could use
a web tripwire to determine which specific ad has been
injected for a given user. The choice of ad may reveal
what types of pages the user has recently visited.

We also observed some ISPs that alter web pages
to reduce network traffic. In particular, several cellular
network providers removed extra whitespace or injected
scripts related to image distillation [16]. Such modifi-

cations are useful on bandwidth-constrained networks,
though they may also unintentionally cause page defects,
as we describe in Section 2.4.1.

Enterprises. Enterprises have incentives to modify the
pages requested by their clients as well, such as traffic re-
duction and client protection. Specifically, we observed
proxy caches that remove certain meta tags from our
measurement page, allowing it to be cached against our
wishes. Such changes can go against a publisher’s de-
sires or present stale data to a user. Our results also in-
cluded several changes made by Blue Coat WebFilter [9],
an enterprise proxy that detects malicious web traffic.

End Users. Users have several incentives for modifying
the pages they receive, although these changes may not
be in the best interests of the publishers. We found ev-
idence that users block annoyances such as popups and
ads, which may influence a publisher’s revenue stream.
Users also occasionally modify pages for security, pri-
vacy, or performance.

The vast majority of page modifications overall are
caused by user-installed software such as popup block-
ers and ad blockers. The most common modifications
come from popup blocking software. Interestingly, this
includes not only dedicated software like Sunbelt Popup
Killer, but also many personal firewalls that modify web
traffic to block popups. In both types of software, pop-
ups are blocked by JavaScript code injected into every
page. This code interposes on calls to the browser’s
window.open function, much like Naccio’s use of pro-
gram rewriting for system call interposition [15].

Ad blocking proxies also proved to be quite popular.
We did not expect to see this category in our results, be-
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cause our measurement page contained no ads. That is,
ad blocking proxies that solely removed ads from pages
would have gone unnoticed. However, we detected nu-
merous ad blocking proxies due to the JavaScript code
they injected into our page. These proxies included Ad
Muncher, Privoxy, Proxomitron, and many others.

Beyond these annoyance blocking proxies, we found
user-initiated changes to increase security, privacy, and
performance. AnchorFree Hotspot Shield claims to pro-
tect clients on wireless networks, and Internet Explorer
adds a “Mark of the Web” comment to saved pages to
prevent certain attacks [28]. Users also employed web-
based anonymization services such as The Cloak [3], as
well as proxies that allowed pages to be cached by re-
moving certain meta tags.

Malware Authors. Surprisingly, our measurement tool
was also able to detect certain kinds of malware and ad-
ware. Malware authors have clear incentives for modify-
ing web pages, either as a technique for spreading exploit
code or to receive revenue from injected advertisements.
These changes are clearly adversarial to users.

In one instance, a client that was infected by Ad-
ware.LinkMaker [34] visited our measurement page.
The software made extensive changes to the page, con-
verting several words on the page into doubly underlined
links. If the user hovered his mouse cursor over the links,
an ad frame was displayed.

Two other clients saw injected content that appears
consistent with the W32.Arpiframe worm [35]. In these
cases, the clients themselves may not have been infected,
as the Arpiframe worm attempts to spread through local
networks using ARP cache poisoning [40]. When an in-
fected client poisons the ARP cache of another client, it
can then act as a man-in-the-middle on HTTP sessions.
Recent reports suggest that web servers may also be tar-
geted by this or similar worms, as in the recent case of a
Chinese security web site [12].

2.4 Unanticipated Problems

In the cases discussed above, page modifications are
made based on the incentives of some party. However,
we discovered that many of these modifications actually
had severe unintentional consequences for the user, ei-
ther as broken page functionality or exploitable vulnera-
bilities. The threats posed by careless page modifications
thus extend far beyond annoyances such as ad injections.

2.4.1 Page Defects

We observed two classes of bugs that were unin-
tentionally introduced into web pages as a result of
modifications. First, some injected scripts caused a
JavaScript stack overflow in Internet Explorer when they

were combined with the scripts in our web tripwire.
For example, the xpopup.js popup blocking script
in CA Personal Firewall interfered with our calls to
document.write. Similar problems occurred with a
compression script called bmi.js injected by several
ISPs. These bugs occasionally prevented our web trip-
wire from reporting results, but users provided enough
feedback to uncover the issue. In general, such defects
may occur when combining multiple scripts in the same
namespace without the ability to sufficiently test them.

Second, we discovered that the CA Personal Firewall
modifications interfered with the ability to post com-
ments and blog entries on many web sites. Specifi-
cally, code injected by the firewall appeared in users’
comments, often to the chagrin of the users. We ob-
served 28 instances of “ popupControl()” appear-
ing on MySpace blogs and comments, and well over 20
sites running the Web Wiz Forums software [39] that
had the same code in their comments. We reproduced
the problem on Web Wiz Forums’ demo site, learning
that CA Personal Firewall injected the popup blocking
code into the frame in which the user entered his com-
ments. We observed similar interference in the case
of image distillation scripts that contained the keyword
“nguncompressed.”

2.4.2 Vulnerabilities

More importantly, we discovered several types of page
changes that left the modified pages vulnerable to cross-
site scripting (XSS) attacks. The impact of these vul-
nerabilities should not be understated: the modifications
made most or all of the pages a user visited exploitable.
Such exploits could expose private information or other-
wise hijack any page a user requests.

Ad Blocking Vulnerabilities. We observed exploitable
vulnerabilities in three ad-blocking products: two free
downloadable filter sets for Proxomitron (released under
the names Sidki [33] and Grypen [19]), plus the commer-
cial Ad Muncher product [4]. At the time of our study,
each of these products injected the URL of each web
page into the body of the page itself, as part of a com-
ment. For example, Ad Muncher injected the following
JavaScript comment onto Google’s home page:

// Original URL: http://www.google.com

These products did not escape any of the characters in
the URL, so adversaries were able to inject script code
into the page by convincing users to visit a URL similar
to the following:

http://google.com/?</script><script>alert(1);

Servers often ignore unknown URL parameters (fol-
lowing the ‘?’), so the page was delivered as usual.
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However, when Ad Muncher or Proxomitron copied this
URL into the page, the “</script>” tag terminated
the original comment, and the script code in the remain-
der of the URL was executed as part of the page. To
exploit these vulnerabilities, an adversary must convince
a user to follow a link of his own construction, possibly
via email or by redirecting the user from another page.

It is worth noting that our measurement tool helped us
discover these vulnerabilities. Specifically, we were able
to search for page changes that placed the page’s URL in
the body of the page. We flagged such cases for further
security analysis.

We developed two exploit pages to demonstrate the
threat posed by this attack. Our exploit pages first detect
whether a vulnerable proxy is in use, by looking for char-
acteristic modifications in their own source code (e.g., an
“Ad Muncher” comment).

In one exploit, our page redirects to a major bank’s
home page.2 The bank’s page has a login form but is
served over HTTP, not HTTPS. (The account name and
password are intended to be sent over HTTPS when the
user submits the form.) Our exploit injects script code
into the bank’s page, causing the login form to instead
send the user’s account name and password to an adver-
sary’s server.

In a second exploit, we demonstrate that these vulner-
abilities are disconcerting even on pages for which users
do not normally expect an HTTPS connection. Here, our
exploit page redirects to Google’s home page and injects
code into the search form. If the user submits a query,
further exploit code manipulates the search results, in-
jecting exploit code into all outgoing links. This allows
the exploit to retain control of all subsequent pages in the
browser window, until the user either enters a new URL
by hand or visits an unexploited bookmark.

In the case of Ad Muncher (prior to v4.71), any HTTP
web site that was not mentioned on the program’s ex-
clusion list is affected. This list prevents Ad Muncher
from injecting code into a collection of JavaScript-heavy
web pages, including most web mail sites. However, Ad
Muncher did inject vulnerable code into the login pages
for many banks, such as Washington Mutual, Chase, US
Bank, and Wachovia, as well as the login pages for many
social networking sites. For most social networking sites,
it is common to only use HTTPS for sending the login
credentials, and then revert to HTTP for pages within the
site. Thus, if a user is already logged into such a site, an
adversary can manipulate the user’s account by injecting
code into a page on the site, without any interaction from
the user. This type of attack can even be conducted in a
hidden frame, to conceal it from the user.

2We actually ran the exploit against an accurate local replica of the
bank’s home page, to avoid sending exploit code to the bank’s server.

In both Proxomitron filter sets (prior to September 8,
2007), all HTTP traffic is affected in the default config-
uration. Users are thus vulnerable to all of the above
attack scenarios, as well as attacks on many web mail
sites that revert to HTTP after logging in (e.g., Gmail,
Yahoo Mail). Additionally, Proxomitron can be config-
ured to also modify HTTPS traffic, intentionally acting
as a “man in the middle.” If the user enables this feature,
all SSL encrypted pages are vulnerable to script injection
and thus leaks of critically private information.

We reported these vulnerabilities to the developers of
Ad Muncher and the Proxomitron filter sets, who have
released fixes for the vulnerabilities.

Internet Explorer Vulnerability. We identified a simi-
lar but less severe vulnerability in Internet Explorer. IE
injects a “Mark of the Web” into pages that it saves to
disk, consisting of an HTML comment with the page’s
URL [28]. This comment is vulnerable to similar at-
tacks as Ad Muncher and Proxomitron, but the injected
scripts only run if the page is loaded from disk. In this
context, the injected scripts have no access to cookies or
the originating server, only the content on the page itself.
This vulnerability was originally reported to Microsoft
by David Vaartjes in 2006, but no fix is yet available [37].

The Cloak Vulnerabilities. Finally, we found that
the “The Cloak” anonymization web site [3] contains
two types of XSS vulnerabilities. The Cloak provides
anonymity to its users by retrieving all pages on their be-
half, concealing their identities from web servers. The
Cloak processes and rewrites many HTML tags on each
page to ensure no identifying information is leaked. It
also provides users with options to rewrite or delete all
JavaScript code on a page, to prevent the code from ex-
posing their IP address.

We discovered that The Cloak replaced some tags
with a comment explaining why the tag was removed.
For example, our page contained a meta tag with the
name “generatorversion.” The Cloak replaced this tag
with the following HTML comment:

<!-- the-cloak note - deleting possibly dangerous
META tag - unknown NAME ’generatorversion’ -->

We found that a malicious page could inject script
code into the page by including a carefully crafted meta
tag, such as the following:

<meta name="foo--><script>alert(1);</script>">

This script code runs and bypasses The Cloak’s poli-
cies for rewriting or deleting JavaScript code. We re-
ported this vulnerability to The Cloak, and it has been
resolved as of October 8, 2007.

Additionally, The Cloak faces a more fundamental
problem because it bypasses the browser’s “same origin
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policy,” which prevents documents from different origins
from accessing each other [31]. To a client’s browser, all
pages appear to come from the-cloak.com, rather
than their actual origins. Thus, the browser allows all
pages to access each other’s contents. We verified that
a malicious page could load sensitive web pages (even
HTTPS encrypted pages) from other origins into a frame
and then access their contents. This problem is already
known to security professionals [20], though The Cloak
has no plans to address it. Rather, users are encouraged
to configure The Cloak to delete JavaScript code to be
safe from attack.

OS Analogy. These vulnerabilities demonstrate the
power wielded by web page rewriting software, and the
dangers of any flaws in its use. An analogy between
web browsers and operating systems helps to illustrate
the severity of the problem. Most XSS vulnerabilities
affect a single web site, just as a security vulnerability
in a program might only affect that program’s operation.
However, vulnerabilities in page rewriting software can
pose a threat for most or all pages visited, just as a root
exploit may affect all programs in an operating system.
Page rewriting software must therefore be carefully scru-
tinized for security flaws before it can be trusted.

3 Web Tripwires

Our measurement study reveals that in-flight page modi-
fications can have many negative consequences for both
publishers and users. As a result, publishers have an in-
centive to seek integrity mechanisms for their content.
There are numerous scenarios where detecting modifica-
tions to one’s own web page may be useful:

• Search engines could warn users of injected scripts
that might alter search results.

• Banks could disable login forms if their front pages
were modified.

• Web mail sites could debug errors caused by in-
jected scripts.

• Social networking sites could inform users if they
detect vulnerable proxies, which might put users’
accounts at risk.

• Sites with advertising could object to companies
that add or replace ads.

Publishers may also wish to prevent some types of page
changes, to prevent harm to their visitors or themselves.

HTTPS provides one rigid solution: preventing page
modifications using encryption. However, the use of
HTTPS excludes many beneficial services, such as
caching by web proxies, image distillation by ISPs with

low bandwidth networks, and security checks by enter-
prise proxies. HTTPS also imposes a high cost on the
server, in terms of financial expense for signed certifi-
cates, CPU overhead on the server, and additional latency
for key exchange.

In cases where HTTPS is overly costly, we propose
that publishers deploy web tripwires like those used in
our measurement study. Web tripwires can effectively
detect most HTML modifications, at low cost and in to-
day’s web browsers. Additionally, they offer more flexi-
bility than HTTPS for reacting to detected changes.

3.1 Goals

Here, we establish a set of goals a publisher may have for
using a web tripwire as a page integrity mechanism. Note
that some types of tripwires may be worthwhile even if
they do not achieve all of the goals.

First, a web tripwire should detect any changes to the
HTML of a web page after it leaves the server and before
it arrives at the client’s browser. We exclude changes
from browser extensions, as we consider these part of
the user agent functionality of the browser. We also cur-
rently exclude changes to images and embedded objects,
although these could be addressed in future work.

Second, publishers may wish for a web tripwire to
prevent certain changes to the page. This goal is difficult
to accomplish without cryptographic support, however,
and it may not be a prerequisite for all publishers.

Third, a web tripwire should be able to pinpoint the
modification for both the user and publisher, to help them
understand its cause.

Fourth, a web tripwire should not interfere with the
functionality or performance of the page that includes
it. For example, it should preserve the page’s semantics,
support incremental rendering of the page, and avoid in-
terfering with the browser’s back button.

3.2 Designs & Implementations

Several implementation strategies are possible for build-
ing web tripwires. Unfortunately, limitations in popular
browsers make tripwires more difficult to build than one
might expect. Here, we describe and contrast five strate-
gies for building JavaScript-based web tripwires.3 We
also compare against the integrity properties of HTTPS
as an alternative mechanism. The tradeoffs between
these strategies are summarized in Table 2.

Each of our implementations takes the same ba-
sic approach. The web server delivers three elements
to the browser: the requested page, a tripwire script,
and a known-good representation of the requested page.

3We focus on JavaScript rather than Flash or other content types to
ensure broad compatibility.
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Goal Count Check XHR then XHR then XHR on HTTPS
Scripts DOM Overwrite Redirect Self

Detects all HTML changes 7 3 3 3 3 3

Prevents changes* 7 7 3 7 7 3

Displays difference 7 7 3 3 3 7

Preserves semantics 3 3 7 3 3 3

Renders incrementally 3 3 7 7 3 3

Supports back button 3 3 7 7 3 3

Table 2: Comparison of how well each tripwire implementation achieves the stated goals. (*Neither “XHR then
Overwrite” nor HTTPS can prevent all changes. The former allows full page substitutions; the latter allows changes
by proxies that act as the encryption endpoint, at the user’s discretion.)

The known-good representation may take one of several
forms; we use either a checksum of the page or a full
copy of the page’s HTML, stored in an encoded string to
deter others from altering it. A checksum may require
less space, but it cannot easily pinpoint the location of
any detected change. When all three of the above el-
ements arrive in the user’s browser, the tripwire script
compares the requested page with the known-good rep-
resentation, detecting any in-flight changes.

We note that for all tripwire implementations, the web
server must know the intended contents of the page to
check. This requirement may sound trivial, but many
web pages are simply the output of server-based pro-
grams, and their contents may not be known in advance.
For these dynamic web pages, the server may need to
cache the contents of the page (or enough information
to reconstruct the content) in order to produce a trip-
wire with the known-good representation. Alternatively,
servers with dynamic pages could use a web tripwire to
test a separate static page in the background. This tech-
nique may miss carefully targeted page changes, but it
would likely detect most of the agents we observed.

We have implemented each of the strategies described
below and tested them in several modern browsers, in-
cluding Firefox, Internet Explorer, Safari, Opera, and
Konqueror. In many cases, browser compatibility lim-
ited the design choices we could pursue.

3.2.1 Count Scripts

Our simplest web tripwire merely counts the number of
script tags on a page. Our measurement results indicate
that such a tripwire would have detected 90% of the mod-
ifications, though it would miss any changes that do not
affect script tags (e.g., those made by the W32.Arpiframe
worm). Here, the known-good representation of the page
is simply the expected number of script tags on the page.
The tripwire script compares against the number of script
tags reported by the Document Object Model (DOM) to
determine if new tags were inserted.

If a change is detected, however, it is nontrivial to
determine which of the scripts do not belong or prevent
them from running. This approach does miss many types
of modifications, but it is simple and does not interfere
with the page.

3.2.2 Check DOM

For a more comprehensive integrity check, we built a
web tripwire that compares the full page contents to a
known-good representation. Unfortunately, JavaScript
code cannot directly access the actual HTML string that
the browser received. Scripts only have access to the
browser’s internal DOM tree, through variables such
as document.documentElement.innerHTML.
This internal representation varies between browsers
and often even between versions of the same browser.
Thus, the server must pre-render the page in all possible
browsers and versions in order to provide a known-good
representation of the page for any client. This technique
is thus generally impractical.

Additionally, the server cannot always accurately
identify a client’s user agent, so it cannot know which
representation to send. Instead, it must send all known
page representations to each client. We send a list of
checksums to minimize space overhead. The tripwire
script verifies that the actual page’s checksum appears
in the array. Because checksums are used, however, this
strategy cannot pinpoint the location of a change.

3.2.3 XHR then Overwrite

Rather than checking the browser’s internal representa-
tion of the page, our third strategy fetches the user’s re-
quested page from the server as data. We achieve this us-
ing an XmlHttpRequest (XHR), which allows scripts
to fetch the contents of XML or other text-based docu-
ments, as long as the documents are hosted by the same
server as the current page. This is an attractive tech-
nique for web tripwires for several reasons. First, the
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tripwire script receives a full copy of the requested page
as a string, allowing it to perform comparisons. Sec-
ond, the request itself is indistinguishable from a typi-
cal web page request, so modifying agents will modify it
as usual. Third, the response is unlikely to be modified
by browser extensions, because extensions expect the re-
sponse to contain XML data that should not be altered.
As a result, the tripwire script can get an accurate view
of any in-flight modifications to the page.

In our first XHR-based web tripwire, the server first
sends the browser a small boot page that contains the
tripwire script and a known-good representation of the
requested page (as an encoded string). The tripwire
script then fetches the requested page with an XHR.
It compares the response with the known-good rep-
resentation to detect any changes, and it then over-
writes the contents of the boot page, using the browser’s
document.write function.

This strategy has the advantage that it could prevent
many types of changes by always overwriting the boot
page with the known-good representation, merely using
the XHR as a test. However, adversaries could easily
replace the boot page’s contents, so this should not be
viewed as a secure mechanism.

Unfortunately, the overwriting strategy has several
drawbacks. First, it prevents the page from rendering
incrementally, because the full page must be received
and checked before it is rendered. Second, the use of
document.write interferes with the back button in
Firefox, though not in all browsers. Third, we discov-
ered other significant bugs in the document.write
function in major browsers, including Internet Explorer
and Safari. This function has two modes of operation:
it can append content to a page if it is called as the
page is being rendered, or it can replace the entire con-
tents of the page if called after the page’s onload event
fires. Many web sites successfully use the former mode,
but our tripwire must use the latter mode because the
call is made asynchronously. We discovered bugs in
document.write’s latter mode that can cause subse-
quent XHRs and cookie accesses to fail in Safari, and that
can cause Internet Explorer to hang if the resulting page
requests an empty script file. As a result, this overwriting
approach may only be useful in very limited scenarios.

However, our measurement tool in Section 2 was
small and simple enough that these limitations were not
a concern. In fact, we used this strategy in our study.

3.2.4 XHR then Redirect

We made a small variation to the above implementation
to avoid the drawbacks of using document.write.
As above, the tripwire script retrieves the originally re-
quested page with an XHR and checks it. Rather than

overwriting the page, the script redirects the browser
to the requested page. Because we mark the page as
cacheable, the browser simply renders the copy that was
cached by the XHR, rather than requesting a new copy
from the server. However, this approach still prevents
incremental rendering, and it loses the ability to prevent
any changes to the page, because it cannot redirect to the
known-good representation. It also consistently breaks
the back button in all browsers.

3.2.5 XHR on Self

Our final implementation achieves all of our stated goals
except change prevention. In this XHR-based approach,
the server first delivers the requested page, rather than a
small boot page. This allows the page to render incre-
mentally. The requested page instructs the browser to
fetch an external tripwire script, which contains an en-
coded string with the known-good representation of the
page. The tripwire script then fetches another copy of
the requested page with an XHR, to perform the integrity
check. Because the page is marked as cacheable (at least
for a short time), the browser returns it from its cache
instead of contacting the server again.4

This strategy cannot easily prevent changes, espe-
cially injected scripts that might run before the tripwire
script. However, it can detect most changes to the re-
quested page’s HTML and display the difference to the
user. It also preserves the page’s semantics, the ability
to incrementally render the page, and the use of the back
button. In this sense, we view this as the best of the im-
plementations we present. We evaluate its performance
and robustness to adversarial changes in Section 4.

3.2.6 HTTPS

Finally, we compare the integrity properties of HTTPS
with those of the above web tripwire implementations.
Notably, the goals of these mechanisms differ slightly.
HTTPS is intended to provide confidentiality and in-
tegrity checks for the client, but it offers no indication
to the server if these goals are not met (e.g., if a proxy
acts as the encryption end point). Web tripwires are in-
tended to provide integrity checks for the server, option-
ally notifying the client as well. Thus, HTTPS and web
tripwires can be seen to complementary in some ways.

As an integrity mechanism, HTTPS provides stronger
security guarantees than web tripwires. It uses encryp-
tion to detect all changes to web content, including im-
ages and binary data. It prevents changes by simply re-
jecting any page that has been altered in transit. It also

4If the page were not cached, the browser would request it a second
time from the server. In some cases, the second request may see a
different modification than the first request.
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preserves the page’s semantics and ability to incremen-
tally render.

However, HTTPS supports fewer policy decisions
than web tripwires, such as allowing certain beneficial
modifications. It also incurs higher costs for the pub-
lisher, as we discuss in Section 4.

4 Evaluation

To evaluate the strengths and weaknesses of web trip-
wires for publishers who might deploy them, we ask
three questions:

1. Are web tripwires affordable, relative to HTTP
pages without tripwires?

2. How do the costs of web tripwires compare to the
costs of HTTPS?

3. How robust are web tripwires against adversaries?

We answer these questions by quantifying the perfor-
mance of pages with and without web tripwires and
HTTPS, and by discussing how publishers can react to
adversarial page modifications.

4.1 Web Tripwire Overhead

To compare the costs for using web tripwires or HTTPS
as page integrity mechanisms, we measured the client-
perceived latency and server throughput for four types of
pages. As a baseline, we used a local replica of a ma-
jor bank’s home page, served over HTTP. This is a re-
alistic example of a page that might deploy a tripwire,
complete with numerous embedded images, scripts, and
stylesheets. We created two copies of this page with web
tripwires, one of which was rigged to report a modifica-
tion. In both cases, we used the “XHR on Self” tripwire
design, which offers the best strategy for detecting and
not preventing changes. We served a fourth copy of the
page over HTTPS, without a web tripwire.

All of our experiments were performed on Emu-
lab [41], using PCs with 3 GHz Xeon processors. We
used an Apache 2 server on Fedora Core 6, without any
hardware acceleration for SSL connections.

Latency. For each page, we measured client-perceived
latency using small scripts embedded in the page. We
measured the start latency (i.e., the time until the first
script runs) to show the responsiveness of the page, and
we measured the end latency (i.e., the time until the
page’s onload event fires) to show how long the page
takes to render fully. We also measured the number of
bytes transferred to the client, using Wireshark [14]. Our
tests were conducted with a Windows XP client running
Firefox, using a simulated broadband link with 2 Mbps
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Figure 3: Impact of web tripwires and HTTPS on client
perceived latency.

bandwidth and 50 ms one-way link latency. Each re-
ported value is the average of 5 trials, and the maximum
relative error was 3.25%.

Figure 3 shows that the pages with web tripwires did
not increase the start latency over the original page (i.e.,
all were around 240 ms). In comparison, the extra round
trip times for establishing an SSL connection contributed
to a much later start for the HTTPS page, at 840 ms.

The time spent rendering for the web tripwires was
longer than for the HTTP and HTTPS pages, because
the tripwires required additional script computation in
the browser. The web tripwire that reported a modifica-
tion took the longest, because it computed the difference
between the actual and expected page contents. Despite
this, end-to-end latencies of the tripwire pages were still
lower than for the HTTPS page.

Table 3 shows that transmitting the web tripwire in-
creased the size of the transferred page by 17.3%, rel-
ative to the original page. This increase includes a full
encoded copy of the page’s HTML, but it is a small per-
centage of the other objects embedded in the page.

Future web tripwire implementations could be ex-
tended to check all data transferred, rather than just the
page’s HTML. The increase in bytes transferred is then
proportional to the number of bytes being checked, plus
the size of the tripwire code. If necessary, this overhead
could be reduced by transmitting checksums or digests
instead of full copies.

Throughput. We measured server throughput using two
Fedora Core 6 clients running httperf, on a 1 Gbps net-
work with negligible latency. For each page, we in-
creased the offered load on the server until the number
of sustained sessions peaked. We found that the server
was CPU bound in all cases. Each session simulated one
visit to the bank’s home page, including 32 separate re-
quests.
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Technique Data Transferred
Original 226.6 KB
Web Tripwire 265.8 KB
Web Tripwire (tripped) 266.0 KB
HTTPS 230.6 KB

Table 3: Number of kilobytes transferred from server to
client for each type of page.
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Figure 4: Impact of web tripwires and HTTPS on server
throughput.

Figure 4 shows our results. The web tripwire caused
only a 4% degradation of throughput compared to the
original page. In comparison, the throughput dropped by
over an order of magnitude when using HTTPS, due to
the heavy CPU load for the SSL handshake.

For well-provisioned servers, HTTPS throughput may
be improved by using a hardware accelerator. However,
such hardware introduces new costs for publishers.

4.2 Handling Adversaries

In some cases, agents that modify web pages may wish
for their behavior to remain undetected. For example,
adversarial agents in the network may wish to inject ads,
scripts, or even malicious code without being detected by
the user or the publisher. Similarly, end users may wish
to conceal the use of some proxies, such as ad-blockers,
from the publisher.

In general, web tripwires cannot detect all changes to
a page. For example, web tripwires cannot detect full
page substitutions, in which an adversary replaces the
requested content with content of his choice. Thus, we
cannot address adversaries who are determined to deliver
malicious content at all costs.

Instead, we consider a threat model in which adver-
saries wish to preserve the functionality of a page while
introducing changes to it. This model assumes that ad-

versaries can observe, delay, and modify packets arbi-
trarily. However, it reflects the fact that end users often
have some expectation of a page’s intended contents.

Under such a threat model, we hypothesize that pub-
lishers can make web tripwires effective against adver-
saries. Adversaries must both identify and disable any
web tripwire on a page. Publishers can make both
tasks difficult in practice using code obfuscation, using
approaches popular in JavaScript malware for evading
signature-based detection (e.g., code mutators [36], dy-
namic JavaScript obfuscation [43], and frequent code
repacking [18]). Several additional techniques can chal-
lenge an adversary’s ability to identify or disable trip-
wires on-the-fly: creating many variants of web tripwire
code, employing web tripwires that report an encoded
value to the server even if no change is observed, and
randomly varying the encoding of the known-good repre-
sentation. Also, integrating web tripwire code with other
JavaScript functionality on a page can disguise tripwires
even if adversaries monitor the behavior of a page or at-
tempt to interpret its code.

Ultimately, it is an open question whether an arms
race will occur between publishers and agents that mod-
ify pages, and who would win such a race. We feel that
the techniques above can help make web tripwires an
effective integrity mechanism in practice, by making it
more difficult for adversaries to disable them. However,
using HTTPS (alternatively or in addition to web trip-
wires) may be appropriate in cases where page integrity
is critical.

4.3 Summary

Overall, web tripwires offer an affordable solution for
checking page integrity, in terms of latency and through-
put, and they can be much less costly than HTTPS. Fi-
nally, though they cannot detect all changes, web trip-
wires can be robust against many types of agents that
wish to avoid detection.

5 Configurable Toolkit

Based on our findings, we developed an open source
toolkit to help publishers easily integrate web tripwires
into their own pages. When using tripwires, publishers
face several policy decisions for how to react to detected
modifications. These include: (1) whether to notify the
end user, (2) whether to notify the server, (3) whether
the cause can be accurately identified, and (4) whether
an action should be taken. Our toolkit is configurable to
support these decisions.

The web tripwire in our toolkit uses the same “XHR
on Self” technique that we evaluated in Section 4. We of-
fer two implementations with different deployment sce-
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narios: one to be hosted entirely on the publisher’s
server, and a second to be hosted by a centralized server
for the use of many publishers.

The first implementation consists of two Perl CGI
scripts to be hosted by the publisher. The first script pro-
duces a JavaScript tripwire with the known-good repre-
sentation of a given web page, either offline (for infre-
quently updated pages) or on demand. The second script
is invoked to log any detected changes and provide ad-
ditional information about them to the user. Publishers
can add a single line of JavaScript to a page to embed the
web tripwire in it.

Our second implementation acts as a web tripwire
service that we can host from our own web server.
To use the service, web publishers include one line of
JavaScript on their page that tells the client to fetch the
tripwire script from our server. This request is made in
the background, without affecting the page’s rendering.
Our server generates a known-good representation of the
page by fetching a separate copy directly from the pub-
lisher’s server, and it then sends the tripwire script to the
client. Any detected changes are reported to our server,
to be later passed on to the publisher. Such a web trip-
wire service could easily be added to existing web site
management tools, such as Google Analytics [17].

In both cases, the web tripwire scripts can be config-
ured for various policies as described below.

Notifying the User. If the web tripwire detects a change,
the user can be notified by a message on the page. Our
toolkit can display a yellow bar at the top of the page
indicating that the page has changed, along with a link
to view more information about the change. Such a
message could be beneficial to the user, helping her to
complain to her ISP about injected ads, remove adware
from her machine, or upgrade vulnerable proxy software.
However, such a message could also become annoying
to users of proxy software, who may encounter frequent
messages on many different web sites.

Notifying the Server. The web tripwire can report its
test results to the server for further analysis. These re-
sults may be stored in log files for later analysis. For ex-
ample, they may aid in debugging problems that visitors
encounter, as proposed in AjaxScope [24]. Some users
could construe such logging as an invasion of their pri-
vacy (e.g., if publishers objected to the use of ad block-
ing proxies). We view such logging as analogous to col-
lecting other information about the client’s environment,
such as IP address and user agent, and use of such data is
typically described under a publisher’s privacy policy.

Identifying the Cause. Accurately identifying the cause
of a change can be quite difficult in practice. It is clearly
a desirable goal, to help guide both the user and pub-

lisher toward an appropriate course of action. In our own
study, for example, we received feedback from disgrun-
tled users who incorrectly assumed that a modification
from their Zone Alarm firewall was caused by their ISP.

Unfortunately, the modifications made by any partic-
ular agent may be highly variable, which makes signa-
ture generation difficult. The signatures may either have
high false negative rates, allowing undesirable modifica-
tions to disguise themselves as desirable modifications,
or high false positive rates, pestering users with notifica-
tions even when they are simply using a popup blocker.

Our toolkit allows publishers to define patterns to
match known modifications, so that the web tripwire can
provide suggestions to the user about possible causes or
decide when and when not to display messages. We rec-
ommend to err on the side of caution, showing multiple
possible causes if necessary. As a starting point, we have
built a small set of patterns based on some of the modifi-
cations we observed.

Taking Action. Even if the web tripwire can properly
identify the cause of a modification, the appropriate ac-
tion to take may depend highly on the situation. For ex-
ample, users may choose to complain to ISPs that inject
ads, while publishers may disable logins or other func-
tionality if dangerous scripts are detected. To support
this, our toolkit allows publishers to specify a callback
function to invoke if a modification is detected.

6 Related Work

6.1 Client Measurements

Unlike web measurement studies that use a “crawler” to
visit many servers, our work measures the paths from
one server to many clients. Like the ANA Spoofer
project [8], we drew many visitors by posting notices
to sites like Slashdot and Digg. Opportunistic measure-
ments of client traffic have been useful in other network
studies as well, such as leveraging BitTorrent peers in
iPlane [27], Coral cache users in Illuminati [10], and spu-
rious traffic sources by Casado et al [11]. In particular,
Illuminati also uses active code on web pages to measure
properties of clients’ network connections, and AjaxS-
cope uses JavaScript to monitor web application code in
clients’ browsers [24].

6.2 Script Injection

We found that 90.1% of page modifications injected
script code, showing that scripts play a prominent (but
not exclusive) role in page rewriting. Interestingly, many
publishers actively try to prevent script injection, as XSS
attacks have had notable impact [1, 7].
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Many such efforts aim to prevent attacks on the server,
ranging from security gateways [32] to static analy-
sis [42] or runtime protection [21]. These efforts do not
prevent any injections that occur after a page leaves the
server, so they do not address either the modifications or
the vulnerabilities we discovered.

Some researchers defend against script injection on
the client by limiting the damage that injected scripts can
cause. These approaches include taint analysis [38] and
proxies or firewalls that detect suspicious requests [22,
26]. Each of these approaches faces difficulties with
false positives and false negatives, as they must infer un-
wanted behavior using heuristics.

BEEP proposes a whitelisting mechanism in which
publishers can inform enhanced web browsers which
scripts are authorized to run on a given web page [23].
The whitelist contains digests for each script fragment
on the page, and the browser ignores any script fragment
whose digest is not in the whitelist. Such whitelists can
prevent browsers from running scripts injected in transit,
as well as XSS attacks against vulnerable proxies like Ad
Muncher and Proxomitron. However, whitelists would
also prevent potentially desirable script injections, such
as popup blockers, unless the browser granted exceptions
for known scripts. BEEP’s mechanism is no more secure
than web tripwires, as it could also be modified in transit
over an HTTP connection, and it cannot address modifi-
cations of other HTML tags than scripts.

6.3 Integrity Mechanisms

The name for our mechanism is inspired by the Tripwire
project [25], an integrity checking mechanism for UNIX
file systems. Tripwire detects changes to files by com-
paring their “fingerprints” to a known database. Our web
tripwires achieve a similar goal for web pages, where the
pages clients receive are analogous to the files Tripwire
checks. In both cases, tripwires detect changes, notify
administrators, and have configurable policies.

Methods for tamper-proofing software or content
achieve similar goals, detecting unwanted changes to
programs [13]. Also, the “XHR then Overwrite” strategy
described in Section 3.2.3 has similarities to secure boot
mechanisms such as AEGIS [6], both of which verify the
integrity of an execution environment. In contrast, we
forgo costly cryptographic mechanisms for inexpensive
integrity tests, much like cyclic redundancy checks [29].

7 Conclusion

Using measurements of a large client population, we
have shown that a nontrivial number of modifications
occur to web pages on their journey from servers to

browsers. These changes often have negative conse-
quences for publishers and users: agents may inject or
remove ads, spread exploits, or introduce bugs into work-
ing pages. Worse, page rewriting software may intro-
duce vulnerabilities into otherwise safe web sites, show-
ing that such software must be carefully scrutinized to
ensure the benefits outweigh the risks. Overall, page
modifications can present a significant threat to publish-
ers and users when pages are transferred over HTTP.

To counter this threat, we have presented “web trip-
wires” that can detect most modifications to web pages.
Web tripwires work in current browsers and are more
flexible and less costly than switching to HTTPS for
all traffic. While they do not protect against all threats
to page integrity, they can be effective for discovering
even adversarial page changes. Our publisher-hosted and
service-hosted implementations are easy to add to web
pages, and they are available at the URL below:

http://www.cs.washington.edu/research/
security/webtripwires.html
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