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Abstract
Current multiprocessor systems execute parallel and concurrent
software nondeterministically: even when given precisely the
same input, two executions of the same program may produce
different output. This severely complicates debugging, testing,
and automatic replication for fault-tolerance. Previous efforts to
address this issue have focused primarily on record and replay,
but making execution actually deterministic would address the
problem at the root.

Our goals in this work are twofold: (1) to provide fully de-
terministic execution of arbitrary, unmodified, multithreaded
programs as an OS service; and (2) to make all sources of in-
tentional nondeterminism, such as network I/O, be explicit and
controllable. To this end we propose a new OS abstraction, the
Deterministic Process Group (DPG). All communication be-
tween threads and processes internal to a DPG happens de-
terministically, including implicit communication via shared-
memory accesses, as well as communication via OS channels
such as pipes, signals, and the filesystem. To deal with funda-
mentally nondeterministic external events, our abstraction in-
cludes the shim layer, a programmable interface that interposes
on all interaction between a DPG and the external world, mak-
ing determinism useful even for reactive applications.

We implemented the DPG abstraction as an extension to
Linux and demonstrate its benefits with three use cases: plain
deterministic execution; replicated execution; and record and
replay by logging just external input. We evaluated our imple-
mentation on both parallel and reactive workloads, including
Apache, Chromium, and PARSEC.

1. Introduction
Nondeterminism makes the development of parallel and
concurrent software substantially more difficult. Soft-
ware testers face daunting incompleteness challenges be-
cause nondeterminism leads to an exponential explo-
sion in possible executions [27]. Developers must rea-
son about large sets of possible behaviors and attempt to
debug without precise repeatability [31, 36]. Moreover,
standard techniques for fault-tolerant replication do not
work when the software being replicated executes nonde-
terministically [38]. At the same time, the growing pop-
ularity of multicore architectures is making parallel and
concurrent software more and more important.

Unfortunately, nondeterminism is pervasive; thread
scheduling, memory reordering, and timing variations
at the hardware level can all affect the interleaving of
threads and cause a multithreaded program to produce
different outputs when given the same input. We define
this as internal nondeterminism. Internal nondetermin-

ism is entirely hidden from the programmer and thus is
undesirable. However, as we demonstrate in this paper, it
is not fundamental and can be completely removed. On
the other hand, events such as user input and the arrival
of network packets are triggered nondeterministically by
the external world. We define this as external nondeter-
minism; this kind of nondeterminism, if present, is fun-
damental and cannot be removed.

What we want is a software environment where in-
ternal nondeterminism is completely eliminated. What
we want is more than just deterministic record and re-
play: multithreaded programs should always execute de-
terministically relative to their explicitly specified in-
puts. Moreover, where external nondeterminism exists,
it should be made explicit and controllable.

Recent research has begun to explore ways of reduc-
ing internal nondeterminism in multithreaded programs.
However, current proposals fall short in several aspects:
they do not deal with nondeterministic channels other
than shared-memory; they do not offer ways of making
external nondeterminism explicit and controllable; they
either require new hardware [14], apply to only a sub-
set of programs [7, 29], or require recompilation [6]; and
they do not support multiprocess applications.

Our goals are to completely eliminate nondetermin-
ism where possible, including channels beyond shared-
memory like pipes, signals, and the filesystem, and to
make all intentional, external nondeterminism explicit
and controllable. To this end, we propose a new OS
abstraction, the Deterministic Process Group (DPG). A
programmer uses this abstraction to define a determinis-
tic box inside which all communication happens deter-
ministically. All of the nondeterministic input received
by a DPG is interposed upon by the shim layer, an in-
terface that can be used by programmers to observe and
control external nondeterminism in a flexible way.

A DPG is effectively a high-level deterministic vir-
tual machine. The deterministic guarantees are provided
transparently by the OS without intervention from the
programmer; thus, DPGs can host arbitrary, unmodified
application binaries. At any given time there may be
many DPGs running alongside many conventional non-
deterministic processes. An alternative design is full-
system determinism, in which a hypervisor executes an
entire OS deterministically relative to inputs triggered by
the hardware. The DPG approach is more flexible be-
cause the programmer can select the desired granularity
of determinism for each individual application.



1.1 DPG Use Cases

Debugging and Testing Many applications do not con-
tinuously interact with the external world, but instead
read inputs at deterministic points in their execution.
Since DPGs provide internal determinism by default,
these applications will execute completely deterministi-
cally when run within a DPG. This has obvious bene-
fits for debugging, since execution is directly repeatable.
Moreover, removing internal nondeterminism has the po-
tential to reduce the problem of testing multithreaded
programs to the problem of testing sequential programs
by making execution a function of only the explicit in-
puts, including external nondeterminism.

Record/Replay Controlling external nondeterminism
with the shim layer makes determinism useful even for
applications that interact continuously with the external
world. As an example, one can run an application in-
side a DPG and extend the shim layer to log all exter-
nal nondeterminism. This log can be used later to faith-
fully replay an application’s execution for debugging and
other analyses. Most prior work on record and replay
of multithreaded applications focuses on how to record
internal nondeterminism caused by shared-memory ac-
cesses. This leads to either unwieldy logs and high over-
heads [16, 22] or imprecise replay [1, 31, 36]. The inter-
nal determinism offered by DPGs completely subsumes
this problem; only external inputs need to be recorded.

Replication for Fault Tolerance DPGs naturally en-
able replication of multithreaded applications. By run-
ning multiple copies of an application inside DPGs on
several machines and replicating the inputs, all replicas
will behave the same way because there is no internal
nondeterminism. This can be implemented by extending
the shim layer to ensure that all replicas receive the same
input at the same point in their execution. Because DPGs
eliminate all forms of internal nondeterminism, there is
less to log and replicate. This is a major issue in prior
work [5, 38–40] on replication mostly because shared-
memory is a very large source of such nondeterminism.

1.2 Outline and Contributions
This paper makes several conceptual and architectural
contributions. First, we identify the fundamental dis-
tinction between internal and external nondeterminism,
and we demonstrate that internal nondeterminism can be
eliminated from programs. To do this, we expand on ear-
lier work that removed shared-memory nondeterminism
by also removing internal nondeterminism from signals,
pipes, the filesystem, and other OS channels.

Second, we propose the Deterministic Process Group
abstraction (Section 2), which lets programmers define
the boundary between internal and external nondeter-
minism. As part of this abstraction we introduce the

shim layer, whose interface lets programmers observe
and control all external nondeterminism.

This paper also presents and evaluates our implemen-
tation of these ideas. In Sections 3–4, we describe dOS, a
Linux-based implementation of DPGs and the shim layer
that enables the deterministic execution of arbitrary, un-
modified binaries. Section 5 demonstrates the usefulness
of the shim layer by using it to implement determinis-
tic filesystem services, replicated execution of a multi-
threaded server, and record/replay. Section 6 provides a
detailed evaluation of dOS and our shim applications on
a variety of workloads. Finally, we end with related work
and closing remarks.

2. The Abstraction
Figure 1 illustrates the abstract model of a Determin-
istic Process Group and Figure 2 illustrates the major
components of our system. A DPG consists of a group
of threads and processes along with the kernel objects
they share. Kernel objects include shared-memory pages,
pipes, and sockets. Threads communicate by performing
operations on shared kernel objects, for example by read-
ing from a shared page or writing to a shared pipe. A ker-
nel object is internal if it can be modified only by threads
inside the DPG, and is external if it can be modified by
threads or devices outside the DPG. We refer to a thread
executing inside a DPG as a deterministic thread, and we
refer to a DPG’s set of threads and internal objects col-
lectively as a deterministic box.

Figure 1 shows three deterministic threads, Thread1,
Thread2, and Thread3, two internal objects, the memory
page and the pipe, and two external objects, the socket
and the file. Thread1 and Thread2 are members of
the same process, Pa. The deterministic box is illustrated
with a dotted outline. Note that internal objects need not
be shared by the entire DPG; in this example, the memory
page is shared by just two threads.

The final component of a DPG is a user-space ser-
vice called a shim program. A shim program sits on the
boundary of a deterministic box, and its job is to in-
terpose on communication that crosses the deterministic
boundary. Shim programs are written using a system call
interface called the shim layer. This interface provides
new opportunities for systems programmers that we ex-
plore in detail throughout this paper.

2.1 DPGs and Their Guarantees
A new DPG is created with the sys makedet system
call, and initially hosts just the calling thread. Each new
thread spawned by the initial thread is added to the DPG,
and in this way the DPG expands to include all descen-
dant threads and processes. A thread leaves a DPG when
it exits. We have not found DPG join and leave prim-
itives necessary and so have not defined them. Threads
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Figure 1. A Deterministic Process Group

hosted in a DPG need not share an address space, which
means a DPG can host many multithreaded processes.

Deterministic threads invoke system calls and read
and write shared-memory just like ordinary threads.
However, DPGs distinguish between operations on in-
ternal objects, which happen deterministically, and oper-
ations on external objects, which happen nondetermin-
istically. Interactions with external objects represent a
DPG’s only source of nondeterminism; essentially, these
external interactions represent the inputs a DPG receives
from the external world.

Given the same initial state and the same stream of
external inputs, a DPG is guaranteed to execute the
same steps of inter-thread communication and produce
the same output. More precisely, as a DPG executes it
performs shared-memory loads and stores, invokes
system calls, and handles asynchronous signals; each of
these operations introduces nondeterminism only when
it involves an entity outside the DPG. This is a stronger
guarantee than output determinism [1, 23], which guar-
antees that replaying a program will produce the same
output, but not that it will reproduce all inter-thread com-
munication steps that lead to that output.

For example, when operating on a network socket, the
read system call returns nondeterministic data. Addi-
tionally, read is a blocking call; it does not return un-
til data is available, which means read will block for a
nondeterministic amount of time. However, when read
operates on a device that is internal to a DPG, such as an
internal pipe, read behaves deterministically.

In summary, a DPG experiences nondeterminism only
when it: (1) reads data from an external source; (2)
blocks to wait for external data; or (3) handles a sig-
nal sent from an external source. Our guarantee is that
DPGs execute deterministically relative to a stream of
such nondeterministic input, and also relative to the ini-
tial state of the DPG at the call to sys makedet. Note
that this guarantee holds even across different machines.

Logical time Conceptually, a DPG executes as if it was
serialized onto a logical timeline, where logical time is
represented by a single global counter. Blocking system
calls occupy two points on the logical timeline, one to
initiate the call and the other to complete the call. dOS
ensures that internal communication is mapped onto the
logical timeline in a deterministic way. (Section 3 de-
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Figure 2. System Overview

void shim_attach(tid, SYS|SIG)
void shim_trace(*event)
void shim_resume(tid, result)
void shim_queue_sig(tid, siginfo)
void shim_ctl(tid, ...)

(a) Interposing on Nondeterminism

void shim_sleep(tid)
void shim_add_barrier(tid, logical time)
int shim_gettime(tid)

(b) Controlling Logical Time

Figure 3. Shim layer system calls

scribes how our implementation groups instructions into
atomic epochs in order to extract parallelism.) Note that
logical time and physical time are distinct: DPGs guar-
antee deterministic output, but not deterministic perfor-
mance. Input from the external world is mapped onto the
logical timeline in a way controlled by the shim layer,
which is the subject of the next section.

2.2 The Shim Layer
Every DPG is monitored by a user-space service called a
shim program, also referred to as a shim. Shim programs
use the shim layer interface (Figure 3) to observe and
control nondeterministic input.

At a high level, there are two kinds of nondetermin-
istic input: the what and the when. The what includes
the values of external input, such as data read from the
network. Then when includes the blocking times of non-
deterministic system calls, as well as the delivery times
of external signals. Shims can observe and control both
kinds of nondeterministic input.

As a motivating example, consider record and replay
implemented with a pair of shim programs. The record
shim observes execution: for every nondeterministic sys-
tem call, the shim logs the number of logical time steps
the call spent blocked, along with the return value of the
call. The replay shim controls execution: it ensures that
every nondeterministic system call is scheduled to return
at the specific logical time and with the specific value
specified in the log.

The following sections first describe how shims ob-
serve and control the what (Figure 3a), and then how
shims observe and control the when (Figure 3b), using
record and replay as running examples.
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2.2.1 Interposing on Nondeterminism
Shims use shim trace to wait for a DPG to encounter
nondeterminism. shim trace blocks until either (a) a
deterministic thread is about to perform a nondeterminis-
tic system call, or (b) an external signal is about to be de-
livered to a deterministic thread. In both cases, the deter-
ministic thread stalls, execution transfers to the shim pro-
gram, and shim trace returns. The shim can interpose
on this nondeterministic event and then return control
back to the deterministic thread by calling shim resume.
In this way, execution of a deterministic thread alternates
between itself and a shim program, much like execution
of an ordinary thread alternates between user-space and
kernel-space.

For system calls, shim trace populates the given
event structure with the system call number and argu-
ments. The shim should perform the system call on be-
half of the deterministic thread and then transfer control
back to deterministic thread by calling shim resume, us-
ing the result parameter of shim resume to specify the
system call’s return value. The shim might perform the
call by forwarding the call to the OS (e.g., for record) or
by ignoring the OS entirely (e.g., for replay).

For external signals, the event structure includes the
siginfo t of the pending signal. The shim can queue
the signal for delivery by calling shim queue sig, save
the signal internally for later delivery, or discard the
signal entirely. In each case, the shim returns control to
the deterministic thread by calling shim resume with an
empty result.

2.2.2 Controlling Logical Time
A shim program monitors the passage of logical time
in a DPG by registering logical time barriers using
shim add barrier. A logical time barrier is a timer tied
to a specific deterministic thread (through the tid param-
eter); when the timer goes off, the deterministic thread
stalls and the shim is notified through shim trace. The
barrier time is specified as an offset relative to the cur-
rent logical time of the DPG, which can be obtained with
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Figure 5. Controlling a blocking system call

shim gettime. Time barriers can be used to control the
nondeterministic when, as described below.

System Call Blocking Time Figures 4 and 5 illustrate
how to observe and control the number of logical time
steps that a system call blocks. Both examples follow a
similar pattern; the only difference is the way in which
shim add barrier is called.

Figures 4 illustrates observing a blocking system call
(e.g., for record). When deterministic thread T performs
a system call (a), the call is trapped by the shim, which
returns from shim trace. At this point, thread T stalls
and the DPG’s logical time does not advance. The shim
can now forward the call to the OS, but before doing
so it puts T to sleep by calling shim sleep (b). While
T is asleep it is detached from the logical timeline and
does not execute; this allows a nondeterministic amount
of logical time to pass in the DPG while the system call
is being performed. When the system call finally com-
pletes, the shim synchronizes with the DPG by register-
ing a time barrier for T to happen at the very next logical
time step in the DPG (c). Once that barrier triggers, the
shim returns control to T via shim resume (d).

Figure 5 illustrates controlling a blocking system call
(e.g., for replay). Again, deterministic thread T per-
forms a system call which is trapped by the shim via
shim trace (a). The key difference in this example is
that the shim decides, a priori, that the system call should
complete in exactly n logical time steps. For example, a
replay shim would read n from a log. To enforce this,
the shim registers a barrier for T that will trigger n steps
in the future and then puts T to sleep (b). While T is
asleep it does not execute; the rest of the DPG executes
normally for exactly n logical time steps, but no further.
At this point the barrier triggers: T wakes and notifies
the shim (c). Finally, the shim returns from the system
call and returns control to thread T (d).

Signal Delivery Time Now suppose a shim wants to
deliver a signal to thread T at logical time n. To do
this, the shim should simply register a barrier for time
n. When that barrier is reached, the shim can queue the



signal for immediate delivery using shim queue sig
and then resume the thread using shim resume.

2.2.3 Shim Use Cases
Shim programs can implement the record/replay and
replicated execution services discussed earlier, but we
envision many other kinds of shim programs as well.
Some shims will be generic, application-independent
services written by systems programmers, while others
will be written by application programmers and tailored
to enhance a specific application. Additionally, a shim
program can be used to adjust the boundary of a deter-
ministic box in two ways described below.

Expanding the Set of Deterministic Services An OS
that supports DPGs may decide to implement some sys-
tem calls nondeterministically to reduce kernel complex-
ity, even when deterministic implementations are possi-
ble under the right assumptions. For example, in dOS,
interaction with local files remains nondeterministic due
to variations in disk latency, even though this nondeter-
minism can be considered internal and thus eliminated
under the right assumptions. Section 5.1 explores how a
shim can make local file access deterministic.

Further, a shim can virtualize global resources such
as process identifiers in a deterministic way, as in [30].
A shim can even convert physical times (e.g., used by
sleep and alarm) into virtual, logical times. This would
eliminate nondeterminism introduced by real time, but
of course is only meaningful for applications that do not
require a precise correspondence with real time.

Customizing the Nondeterministic Interface System
calls are a DPG’s basic interface to the nondeterministic
world. However, it is often beneficial to let applications
define the nondeterministic interface at a more abstract
level. For example, a server application might want to
hide many low-level read and write system calls be-
hind a single high-level, nondeterministic getmsg call.
Previous work has argued that this flexibility is valuable
for record/replay systems [19], but we consider this flex-
ibility to be even more general; for example, Section 5.3
shows how it is useful for replicated execution.

We enable this flexibility in dOS by defining a new
system call, dpg callshim, which makes a direct call
from a DPG into its shim. Effectively, dpg callshim
allows developers to divide an application into two parts:
the deterministic part that runs in a DPG and the nonde-
terministic part that runs in a shim.

3. Deterministic Execution Algorithm
The first implementation choice we make is which al-
gorithm dOS uses to enforce determinism. Prior work
on shared-memory determinism has proposed a family
of deterministic execution algorithms, including DMP-
O, DMP-B, and DMP-TM [6, 14]. dOS implements the
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Figure 6. Timeline of a quantum round in DMP-O.
T2 finishes its quantum in parallel mode (a), while T1

and T3 have work left for serial mode (b,c).

DMP-O ownership-tracking algorithm; we selected it for
its relative simplicity of implementation, but any deter-
ministic execution algorithm can support DPGs as long
as the shim layer can be implemented on top of it.

One constraint imposed by the shim layer is that log-
ical time should be representable with a single global
counter. DMP-O, DMP-B, and DMP-TM all satisfy this
constraint, but other (as yet uninvented) algorithms may
require a more complex notion of logical time, such as
a vector clock. We believe the shim layer could be ex-
tended to support such algorithms, but the details are left
for future work.

In the rest of this section, we first summarize our
earlier work on using DMP-O to enforce deterministic
execution of multithreaded programs that communicate
via shared-memory. Next, we describe how to generalize
DMP-O to include communication via channels other
than shared-memory, such as pipes and signals.

3.1 Shared-Memory Determinism
Two key observations underlie DMP-O. First, if threads
do not touch shared data, i.e., if they do not commu-
nicate, their execution will be deterministic no matter
how they are scheduled. Second, when threads do com-
municate, a trivial deterministic schedule is to divide
each thread’s execution into chunks and then execute all
chunks in a deterministic serial order.

Following these observations, execution in DMP-O is
divided into chunks called quanta. A round consists of
all threads executing one quantum each. Each round is
divided into a parallel mode and a serial mode. In paral-
lel mode, threads run in parallel but are isolated; they do
not communicate. In serial mode, threads run serially but
can communicate arbitrarily. A thread ends its parallel
mode once it has reached an instruction that might com-
municate with other threads. Serial mode begins once all
threads have completed parallel mode, and ends once all
threads have had a chance to run. The parallel and serial
modes are thus isolated by global barriers into two-stage
rounds, as illustrated in Figure 6.

Notice that the parallel and serial modes are directly
inspired from the two key observations stated above.
DMP-O is deterministic as long as threads are (1) bro-



ken into quanta at deterministic boundaries, (2) ordered
deterministically in serial mode, and (3) correctly iso-
lated in parallel mode. The first two constraints are easily
satisfied: we define a quantum to be some deterministic
number of dynamic instructions, and we order threads in
serial mode by sorting them by creation order.

DMP-O achieves isolation in parallel mode by par-
titioning ownership of shared-memory across threads.
Each memory location is in one of two ownership states:
owned-by-T for some thread T , or shared. A location
that is owned-by-T is private to T ; no other thread can
access the location during parallel mode. A location that
is shared is globally read-only; all threads can read the
location during parallel mode, but none can modify it. A
thread waits for serial mode before performing an opera-
tion that does not meet these conditions.

Ownership states evolve during serial mode by fol-
lowing two rules: (1) before thread T writes to a location,
it sets ownership of that location to owned-by-T ; and (2)
before T reads a location that is not owned-by-T , it sets
ownership of that location to shared.

Logical time Finally, we say that logical time incre-
ments on every mode transition, i.e., on every transition
from parallel mode to serial mode and back. Note that
within a single mode every thread appears to execute
atomically. From this property it follows that mode tran-
sitions are meaningful increments of logical time.

3.2 Beyond Shared-Memory Communication
Our model of a DPG from Figure 1 is that threads com-
municate by performing operations on shared kernel ob-
jects, which includes more than just shared-memory. To
generalize DMP-O to this model we first observe that
we can track ownership of shared kernel objects just as
for shared-memory locations: if an operation mutates a
kernel object it acts as a “write,” while if an operation
only observes a kernel object it acts as a “read.” In fact,
our implementation (Section 4.1.1) tracks ownership of
shared-memory at the page granularity, effectively treat-
ing a memory page as just another kernel object.

To fully generalize DMP-O we need two additional
changes: the first deals with blocking operations, and the
second deals with asynchronously delivered signals.

Blocking Operations When a system call blocks, the
calling thread ends its current mode (either parallel mode
or serial mode) and is not scheduled to run again until it
unblocks. While a thread is blocked, the rest of the DPG
continues to execute. A thread can only unblock during
a mode transition; this ensures that threads unblock at
discrete points on the logical timeline.

Signal Delivery Incoming signals are queued during
the current mode then delivered immediately on the next
mode transition. Queued signals are partitioned into in-
ternal and external signals, depending on whether they

were sent from a thread inside or outside the DPG, re-
spectively. If there are N threads in a DPG then each
deterministic thread has N logical queues: one queue for
external signals and one queue for signals sent from each
of the N − 1 other deterministic threads.

On a mode transition, internal signals are delivered
first and external signals are delivered last. The internal
signal queues are emptied in a deterministic order, e.g.,
by using the ID of the sending thread as a sort key.

This strategy ensures, first, that internal signals are de-
livered deterministically, and second, that external sig-
nals are delivered at meaningful logical times. Note that
when a thread sends a signal to itself (as with SIGSEGV)
the signal is synchronous; such signals are always deliv-
ered instantly. dOS implements the N -queue model de-
scribed here using a single sorted list. Additionally, dOS
always delivers external SIGKILL signals immediately
(rather than forwarding them to the shim) so that a DPG
can be killed even when its shim program misbehaves.

4. Linux-Based Implementation
We now describe how we implemented dOS, which is a
variant of Linux that implements the DPG abstraction.
dOS makes two major changes to Linux: first, it imple-
ments the shim layer; and second, it implements DMP-O,
which includes an object ownership-tracking mechanism
and a deterministic scheduler that constrains the execu-
tion of each DPG to a deterministic logical timeline. dOS
exports a traditional system call interface to DPGs along
with the sys makedet and dpg callshim system calls.

Our implementation of DMP-O was the most chal-
lenging and invasive change. Overall, we added roughly
5800 lines of new code to the Linux 2.6.24-7/x86-64 ker-
nel and changed roughly 2500 lines of existing code in 53
files. Below we summarize the low-level implementation
details of dOS and discuss engineering challenges (Sec-
tions 4.1–4.4). We end with a summary of the strengths
and limitations of our implementation (Section 4.5).

4.1 Ownership Tracking
4.1.1 Shared-Memory Pages
dOS tracks ownership of shared-memory at the page
granularity by using hardware page-protection to verify
that a deterministic thread does not access a page without
appropriate ownership.

Conceptually, dOS maintains a shadow page table
for each thread. A thread’s shadow table mirrors its real
page table exactly, except that shadow permission bits
are modified to reflect the current distribution of page
ownership. dOS exposes only the shadow page tables to
hardware: on a context switch to thread T , dOS installs
T ’s shadow table onto the CPU even if the previously
scheduled thread shared an address space with T .



Page ownership is encoded into shadow page table
permissions so that ownership violations such as a store
to a shared page will trigger a page fault. dOS intercepts
this page fault, notices it is due to an ownership violation,
and stalls the faulting thread until it is scheduled to run
in serial mode. dOS then assigns ownership of the page
to the faulting thread and continues its execution.

Every conventional process has one real page table
representing its address space. All address space modifi-
cations are expressed in terms of the real page table and
then transparently applied to the shadows. To limit mem-
ory overheads, dOS maintains just N shadow tables per
address space, where N is the number of CPUs, and then
assigns threads to shadow tables, effectively bucketing
the threads in a given process into N ownership groups.
This requires a slight tweak to the DMP-O scheduler:
during parallel mode, all threads that share a shadow
table must be serialized in a deterministic order (e.g.,
scheduled serially in thread creation order). We bucket
threads using a simple greedy algorithm.

This strategy is not limited to shared-memory within
a single process. dOS supports shared-memory across
processes by tracking ownership of physical pages; we
use Linux’s rmap facility to enumerate all user-space
addresses that map a given physical page.

Finally, there are two corner cases worth mention-
ing. First, dOS disables address space randomization for
DPGs so that every DPG has a deterministic address
space layout. Note that we can enable address space ran-
domization in DPGs if we expose the seed as external
nondeterminism. Second, page swapping can introduce
nondeterministic changes to page tables. To preserve de-
terminism, when a page is swapped out, dOS preserves
the page’s ownership state using extra bits in the shadow
page tables. When a page fault triggers a swap-in, dOS
stalls the thread until the page is read from disk, and then
restores the saved ownership state of the page.

4.1.2 Other Kernel Objects
Other kernel objects, such as pipes and sockets, are op-
erated on by system calls. dOS instruments the kernel so
that a system call never operates on a kernel object unless
the calling thread has the appropriate level of ownership.

Adding this instrumentation presents two engineering
challenges. First, where should the instrumentation be
placed? It is tempting to lazily acquire ownership of an
object just before a system call actually uses the object,
but doing this requires reengineering kernel locking pro-
tocols. To see why, note that acquiring ownership may re-
quire sleeping the calling thread to wait for serial mode.
However, a system call may not decide to use an object
until inside an atomic region, e.g., while holding a spin
lock, and it is not safe to sleep in such regions.

dOS avoids this difficulty by conservatively acquiring
ownership of all objects a system call may use before

Behavior (Total Syscalls) Examples
use pages (14) mprotect, read
use address space (6) mprotect, mmap, brk
use inode (32) read, write, lseek, close
use fd table (9) open, dup, close
use fs path (22) open, chdir, chroot, access
read untracked (54) getpid, gettimeofday
modify untracked (172) kill,setrlimit,sigaction

Table 1. System call behaviors

executing the call. This requires adding instrumentation
in just two places: at the system call entry point, and in
the code that wakes up a thread. dOS instruments thread
wakeup to reacquire any privileges lost while the system
call was asleep, e.g., while waiting for input.

The second challenge is that Linux is a large, com-
plex system with over 250 system calls and many unique
types of kernel objects. To simplify our implementation,
we track a few kinds of kernel objects precisely and then
conservatively merge all other kinds of objects into an
untracked objects group. For all but the untracked ob-
jects, dOS tracks ownership using a hash table that maps
an object to its current owner. Freshly allocated objects
are initially owned-by the allocating thread. Ownership
of the untracked objects is implicit: during parallel mode
they are shared; and during serial mode they are owned-
by the thread currently running. Thus, read-only opera-
tions on untracked objects can execute in parallel mode,
while all other operations on untracked objects must wait
for serial mode. This strategy is summarized in Table 1.

An inode is Linux’s internal name for files, sockets,
pipes, and anything else that can be referenced by a file
descriptor. System calls like read that operate on file
descriptors can modify the contents of memory pages,
map new pages into the address space, or even modify the
inode itself. These system calls must acquire ownership
of all of these objects before proceeding.

4.2 Scheduling
The dOS scheduler is implemented as a filter in front of
the default Linux scheduler—it does not push a deter-
ministic thread into the Linux scheduler until the thread
has been scheduled to run by its DPG. This filter imple-
ments the DMP-O scheduling algorithm.

Thread Creation The fork and clone system calls al-
ways execute in serial mode. This ensures that determin-
istic threads are spawned in a global serial order. The
newly spawned thread will be scheduled to run during
the next parallel mode.

Logical Time Barriers The dOS scheduler checks for
pending time barriers on each mode transition. To pre-
vent deadlock, dOS instantly fast-forwards logical time
to the next pending time barrier whenever all threads in
a DPG are simultaneously asleep.



Quantum Formation Recall that parallel mode ends
when all threads have either reached a quantum bound-
ary or stalled to acquire ownership, and serial mode
ends once all threads have reached a quantum boundary,
where quantum boundaries must occur at deterministic
points in a thread’s execution. A possible implementa-
tion is to mark quantum boundaries with system calls,
but this does not guarantee forward progress because
a thread may loop forever without making any system
calls. Additionally it does not guarantee balance; im-
balance leads to excessive waiting at the end of parallel
mode, which leads to poor performance [6].

To guarantee forward progress, dOS defines a quan-
tum budget, which is the maximum amount of work a
thread can perform in a quantum. dOS estimates work
by counting instructions. The quantum budget is simply
a deterministic number of instructions, typically in the
range of tens to hundreds of thousands of instructions.

dOS counts instructions using the hardware “instruc-
tions retired” counter that is available on all modern x86
CPUs. dOS configures this counter to trigger an overflow
interrupt after the quantum budget expires. There are
well-documented caveats about using this counter [15,
43]. Specifically, the counter suffers from nondetermin-
ism that can be engineered around. We follow the so-
lution outlined by [15]: to overcome imprecise interrupt
delivery, dOS must single-step the DPG (via the x86 trap
flag) for up to about 200 instructions per quantum, which
can introduce large overheads. To avoid those overheads,
as an optimization, dOS deterministically ends a quan-
tum when returning from a system call if the remaining
quantum budget is low, but not yet exhausted.

4.3 Additional Optimizations
As demonstrated in [6], DMP-O performs best when par-
allel mode is balanced and when serial mode is empty.
dOS implements a few optimizations to bias execution
towards these conditions. dOS automatically adjusts a
DPG’s quantum budget: when dOS detects significant
parallel mode imbalance, the budget is decreased to re-
duce imbalance, and when dOS detects well-balanced
parallel modes, the budget is increased to reduce quan-
tum barrier overheads. To limit the time spent executing
in serial mode, dOS ends a quantum after a few (heuris-
tically determined) ownership transfers. All of these op-
timizations preserve determinism, since the parameters
used evolve deterministically.

4.4 Shim Programs
In concrete terms, a shim program is composed of a
collection of threads called shim threads. Shim threads
begin life as ordinary user-space threads, e.g., after being
spawned by fork or clone. An ordinary thread becomes
a shim thread by calling shim attach to attach to some
deterministic thread T . Once attached to T , the shim

thread is the distinguished thread that will intercept all
of T ’s nondeterminism through shim trace. If the shim
thread crashes, T will stall on external operations until
attached to by another shim thread.

A thread can act as a shim thread for more than one
deterministic thread. Additionally, to simplify the imple-
mentation of shims, a shim thread can elect to receive
only the nondeterministic system calls or only the exter-
nal signals for a given deterministic thread (by setting the
second parameter of shim attach). Our usual strategy
is to spawn one shim process for every DPG. Within this
process we spawn one shim thread to intercept signals for
the entire DPG, and for every deterministic thread in the
DPG we spawn one shim thread to interpose on the sys-
tem calls performed by the corresponding DPG thread.

Intercepting System Calls When a shim program inter-
cepts a system call it has two options: (1) it can emulate
the system call completely; or (2) it can simply instru-
ment the system call’s entry and exit, allowing the deter-
ministic thread to actually execute the body of the system
call. These options resemble those allowed by ptrace.

The option to simply instrument a system call is se-
lected by passing a special result to shim resume. This
option gives a shim limited control over how the system
call executes in logical time. For example, if a shim sim-
ply instruments read instead of emulating it, the shim
cannot observe or control when the kernel writes to the
given user-space buffer (the writes will happen nonde-
terministically, in an unrecordable way). We provide in-
strumentation as a convenience for cases where full em-
ulation is not necessary. During system call emulation, a
shim can use shim ctl to perform side effects in a DPG,
such as writing to or reading from a user-space buffer.

RDTSC dOS allows shim programs to interpose on the
nondeterministic RDTSC instruction. Our implementation
uses the time stamp disable flag of the x86 cr4 register
to fault on user-mode accesses to RDTSC; these events are
exposed to the shim via shim trace.

4.5 Discussion
Guarantees Provided by dOS dOS guarantees that
communication via the following kernel objects is de-
terministic as long as the objects are completely inter-
nal to a given DPG: shared-memory pages, including
across multiple processes; pipes allocated with pipe;
and futexes (used to implement pthreads synchroniza-
tion). Additionally, dOS guarantees that file descriptors
and memory pages are allocated in a deterministic order;
that the address space evolves deterministically (as via
mmap); that internal signals are delivered deterministi-
cally; and that wait is deterministically notified when
threads in the same DPG exit.

Note that some system calls are deterministic except
in error cases. For example, mmap allocates pages deter-



ministically within an address space, but will fail non-
deterministically if there is not enough physical memory
available to service the request.

Guarantees Not Provided by dOS Our deterministic
guarantees may not translate across different versions of
program binaries no matter how slightly different (e.g.,
after a patch). Also, although our guarantees hold across
different host machines, an application can read host con-
figuration as part of its inputs, for example to dynami-
cally adjust its resource usage; these inputs must be du-
plicated exactly to guarantee determinism.

Additionally, dOS does not guarantee deterministic
access to shared-memory pages that can be modified by
threads or devices outside the DPG. Ideally we might in-
terpose on this external communication using the shim,
but this would require adding excessive restrictions to
non-DPG processes. For example, page ownership might
transition between “exclusive to a DPG” and “exclusive
to the external world,” but this would require stalling ex-
ternal threads as they wait to reacquire page ownership.
Relatedly, DPGs may encounter nondeterminism when
memory is modified through backdoors in /proc.

Retrospective Implementing DPGs in a monolithic ker-
nel such as Linux raises many thorny issues. The exam-
ple of mmap is instructive: reasoning about the cases in
which mmap is nondeterministic requires finding and rea-
soning about many code paths in a monolithic kernel.

More generally, providing determinism requires track-
ing and mediating accesses to shared OS objects. How-
ever, many Linux kernel objects have aliased names,
are named in multiple namespaces, and are accessible
through multiple interfaces. For example, process IDs are
exposed through system calls, the /proc filesystem in-
terface, and in some cases, thread-local storage variables
in the address space of a multithreaded process. If we
consider PIDs to be a source of internal nondeterminism,
dOS must correctly track and reconcile PIDs through all
of these channels, for instance, by virtualizing PID num-
bers before they are exposed to a program so that PID
assignment is deterministic and consistent across pro-
cesses within a DPG. Even if we consider PIDs a source
external nondeterminism (the choice made by dOS), for
record/replay to work correctly a shim program must in-
terpose on all of these different channels for accessing
PIDs, so that PIDs can be recorded and during replay the
same PIDs can be reassigned.

An OS kernel implemented “from scratch” to support
DPGs would benefit from design principles advocated
by exokernels and microkernels. A minimal kernel in-
terface combined with a libOS would push many of the
aliased interfaces and complex code paths out of the ker-
nel and inside the user-space deterministic box, making
it easier to reason about determinism at the system call
layer. The protection domains of a microkernel could fur-

ther simplify many of these issues, since reasoning about
nondeterminism would largely reduce to detecting mes-
sages that cross the boundary of a deterministic box. In
the mmap example, this might be a message to the page-
allocation server.

5. Shim Applications
To demonstrate the usefulness of the shim layer, we
have implemented three shims: deterministic filesystem
services; record/replay by logging just external input;
and replicated execution of a multithreaded server. The
deterministic filesystem service and record/replay shims
can be used with unmodified application binaries, while
the replicated execution shim is application specific. We
note that the shim layer allowed us to quickly prototype
the shims described in this section.

5.1 Deterministic Filesystem Services
FSSHIM provides applications with a deterministic file
hierarchy. All reads and writes to files within this hierar-
chy are deterministic; accesses to files outside of this hi-
erarchy are considered sources of external nondetermin-
ism, as before. There are two sources of nondeterminism
FSSHIM must eliminate: the latency of each operation,
and the number of bytes operated on by the read and
write system calls. FSSHIM eliminates the first by de-
ciding, a priori, that each operation will block for a fixed
and deterministic amount of logical time. For the second,
FSSHIM guarantees that all reads and writes operate
on a deterministic number of bytes by always performing
the maximum amount of work requested (up to an end-
of-file, for reads). FSSHIM can make these guarantees
because it performs the read and write calls on behalf
of the DPG, using the pattern illustrated in Figure 5.

The deterministic blocking time selected by FSSHIM
can affect performance. For example, if FSSHIM selects
a logical blocking time that is too low, the DPG will stall
waiting for disk operations to complete. On the other
hand, if FSSHIM selects a time that is too high, the call-
ing thread will execute artificially slowly. The logical
blocking times we chose for FSSHIM are equivalent to
a delay of about 5 million instructions; we did not exper-
iment heavily with this number.

A file can exist in the deterministic file hierarchy only
if it can be considered internal to the DPG, which is true
when: (1) the initial contents of the file are deterministic;
(2) the file is not written by any threads outside the DPG;
and (3) operations on that file complete in a finite time. In
practice, the third assumption implies fail-stop. FSSHIM
relies on the user to explicitly indicate the parts of the
filesystem for which these assumptions are valid. This
typically includes the directories containing program in-
puts, as well as directories shared system-wide that are
rarely updated, such as /usr and /etc.



5.2 Record/Replay
RECSHIM records all external nondeterminism intro-
duced through the system call interface and signals, en-
abling deterministic program replay. RECSHIM needs to
record only the external nondeterminism because DPGs
eliminate all forms of internal nondeterminism. Further,
RECSHIM can be combined with FSSHIM, reducing
what needs to be logged since accesses to files within
the deterministic file hierarchy would be deterministic.

RECSHIM utilizes the shim layer to interpose on sys-
tem calls and to intercept external signals. System calls
that touch user-space memory are executed by RECSHIM
on behalf of the DPG. RECSHIM produces a log con-
taining the logical time the event occurred and any other
event-specific information needed during replay. For sys-
tem calls, this includes the return value and logical block-
ing time, as well as any side-effects of the system call,
such as the contents of a buffer after performing a socket
read. For signals, a copy of the siginfo is saved. Logs
are compressed on-the-fly with zlib.

We have implemented a proof-of-concept replay shim
to verify that the shim layer offers all the hooks necessary
to implement a replay component. The major challenges
in faithfully replaying system call traces are orthogonal
to the main body of our work and have been explored by
prior work [19, 36, 37].

5.3 Replicated Execution
REPLICASHIM supports replication of a multithreaded
webserver running inside a DPG by guaranteeing that
the order of messages and their logical arrival time is
kept consistent across all replicas. Given the same inputs
and the same logical arrival times, the DPG abstraction
guarantees that all replicas will evolve deterministically.

Our target application is nullhttpd [12], a small,
simple, multithreaded webserver that uses a thread-per-
request model. Our design splits the functionality of the
basic server into three separate process types: a single
arbiter process, and a set of replicas, each composed of a
shim process along with a DPG that hosts nullhttpd.

The arbiter process operates nondeterministically,
outside of any DPG, and accepts incoming HTTP re-
quests from the network. The arbiter broadcasts requests
to the replicated shims, which queue the requests locally.
We modified nullhttpd to read new requests by mak-
ing a direct call to its shim via dpg callshim, rather
than reading from the network. This shows a case where
the programmer defines the interface via which nonde-
terministic inputs are received.

When the arbiter broadcasts a request, it must ensure
that all replicas see that request at the same logical time.
It does this by performing a two-phase commit to deter-
mine a logical time that no replica has advanced beyond.
The protocol works as follows. When the arbiter receives

a new HTTP request from the network, it asks all repli-
cated shims to set a barrier and report their current logi-
cal time. The arbiter uses the maximum value reported by
any replica as the logical arrival time of the new request.
The arbiter then broadcasts the new request and asks each
replica’s shim to set a second barrier for this arrival time;
once this barrier is reached at a replica, the replica’s shim
makes the new request available to nullhttpd and the
replicas continue to evolve deterministically.

6. Evaluation
The goal of our evaluation is to understand the perfor-
mance of DPGs in comparison to ordinary nondetermin-
istic execution (Nondet). We include evaluations of the
three shim programs we built, namely FSSHIM, REC-
SHIM, and REPLICASHIM.

Correctness We tested our dOS implementation by run-
ning the racey [20, 45] deterministic stress test 500
times and verifying that racey always produces the same
output. In addition to the basic racey program, we tested
racey variants that exercise the various components of
our implementation, such as communication via pipes,
signals, and multiprocess shared-memory.

Workloads We evaluated the following parallel work-
loads: the PARSEC [8] and SPLASH2 [44] benchmark
suites; pbzip2 [18] to compress a Linux ISO image;
and make -j to perform a parallel build of the Linux
kernel. The PARSEC and SPLASH2 are workloads opti-
mized for parallelism; we scaled their inputs to run for
about a minute with a single nondeterministic thread.
We present a representative subset of the PARSEC and
SPLASH2 benchmarks that was selected to showcase both
the best-case and worst-case performance of dOS.

We also evaluated three reactive applications: the
Apache and nullhttpd webservers and the Chromium
web browser. Apache and Chromium are especially in-
teresting because they use multiple processes with mul-
tiple threads per process. We evaluated the webservers
using httperf [26] to simulate a constant stream of re-
quests for static pages. We evaluated Chromium with
two experiments: first, we measured the load time of
nytimes.com (without any local caching); and second,
we used Chromium’s debugging facilities to execute a
scripted user session that opened 5 tabs and navigated
to 12 URLs in rapid succession. All Chromium experi-
ments used the process-per-tab model [34].

We ran our experiments on 8-core 2.8GHz Intel Xeon
E5462 machines with 10GB of RAM using rundet, a
small utility that constructs a single DPG and then exe-
cutes an unmodified application binary inside that DPG.
We used a relatively aggressive machine configuration to
adequately explore the scalability of our parallel work-
loads. All results shown are the average over ten execu-
tions, with the highest and lowest values removed.



Config Throughput
Num Threads DPG DPG +

Benchmark Proc per Proc Nondet only FSSHIM

apache 10KB 16 1 10.1K 3.6K 1.7K req/s
apache 10KB 4 4 10.1K 6.6K 2.2K req/s
apache 10KB 1 16 10.2K 7.4K 2.4K req/s

apache 100KB 4 8 1.1K 1.1K 0.9K reqs/s

nullhttpd 10KB 1 16 1.0K 1.0K 1.0K req/s

chromium nytimes 1.8 s 2.4 s 3.8 s
chromium scripted 22 s 37 s 40 s

Table 2. Reactive Workload Evaluation

Overheads Speedup
(relative to Nondet) (8-th over 2-th)

DPG Only DPG + FSSHIM
Benchmark 2-th 4-th 8-th 2-th 4-th 8-th Nondet FSSHIM

blackscholes 1.2 1.2 1.3 1.2 1.3 1.3 3.4 3.2
dedup 2.3 3.6 4.0 4.0 5.8 6.4 1.6 1.0
fmm 2.6 6.1 10.1 2.6 6.0 10.1 2.4 0.6
lu 2.0 2.3 2.3 2.0 2.3 2.3 2.1 1.7
pbzip2 2.0 2.7 3.0 2.1 2.8 3.4 2.6 1.6
make 2.3 4.1 5.9 3.2 5.7 8.2 2.8 1.1

Table 3. Parallel Workload Evaluation

6.1 DPG Overheads
We start with two questions: what are the overheads of
DPGs for typical workloads, relative to nondeterministic
execution, and how much overhead is added by FSSHIM?
To answer these, we ran our workloads in DPGs with no
shim attached and in DPGs with FSSHIM attached.

Table 2 summarizes this evaluation for reactive work-
loads. The first few rows evaluate Apache for workloads
of 10KB and 100KB static pages. For the 100KB work-
load, both the Nondet and the DPG-only case are able
to saturate the gigabit network of the Apache server, in
spite of the extra overhead of using the DPG. FSSHIM
adds some additional overhead, enough to shift the sys-
tem bottleneck to the CPU.

For the 10KB workload, the Nondet case is still able
to saturate the network link. However, this workload
involves a significantly higher rate of system calls and
other nondeterministic events; each system call incurs a
context switch from the DPG to its shim. As a result,
both the DPG-only and the FSSHIM cases experience
serialization and overhead that slows the request rate
between 1.4x and 5.9x.

Throughput generally decreases as the number of pro-
cesses (Column 2) increases. We suspect this is because
interprocess communication is more costly when exe-
cuting in a DPG. Note that scaling can be achieved by
running multiple smaller instances of Apache in separate
DPGs. Overall, we consider these throughputs reason-
able for all but the most high-traffic web sites.

The last two rows show the execution time of Chro-
mium. For the scripted session, latency increases by 1.7×
for DPGs alone and by 1.8× for DPGs with FSSHIM.
Latency increases from 1.8 seconds to just 2.4 seconds
when loading nytimes.com. We also performed this test
for a Google search results page (not shown). All execu-

Config Exec Breakdown Serialization
Num Num % Serial % Single Reasons

Benchmark Proc Thread Mode Stepping % Pgfault % Syscall

apache 10KB 16 1 72% < 1% < 1% 99%
apache 10KB 4 4 80% < 1% < 1% 99%
apache 10KB 1 16 82% < 1% < 1% 99%

apache 100KB 4 8 26% < 1% 2% 98%

nullhttpd 10KB 1 16 11% 0% 2% 98%

chromium nytimes 58% 13% 61% 39%
chromium scripted 25% 13% 72% 28%

blackscholes 1 8 3% 27% 99% 1%
dedup 1 8 54% 12% 77% 23%
fmm 1 8 90% 18% 100% 0%
lu 1 8 45% 35% 95% 5%
pbzip2 1 8 35% 39% 100% 0%
make 8 1 79% 3% 0% 100%

Table 4. DPG Execution Characterization

tion times in the Google search results test were less than
a second, and informally, the differences “felt” negligible
when we interacted with the browser.

Table 3 shows execution overheads for our parallel
workloads with 2, 4, and 8 threads. Overheads are gen-
erally below 3×, often lower than 2.5×. Columns 5-7
show the added cost of FSSHIM, which is typically small,
since most of the applications do not perform a signifi-
cant number of system calls (except dedup and make).

DPG scalability is closer to Nondet scalability when
the overheads do not grow much with the number of
threads. Scalability suffers for workloads like fmm that
share frequently at finer than page-level granularity, but
blackscholes, which does not have fine-grained shar-
ing, has DPG scalability very close to Nondet.

Characterization Table 4 characterizes execution with
DPGs with FSSHIM attached. Column 4 shows the frac-
tion of time execution was serialized (i.e., in serial
mode). As expected, for the parallel workloads, serializa-
tion is highly correlated with overheads and scalability.
blackscholes and fmm are good comparison points;
blackscholes is 3% serialized and scales nearly ide-
ally with DPGs, while fmm is 90% serialized and has
poor scalability. For the reactive workloads, the rela-
tionship between serialization and performance is less
clear, as shim context switch overhead and quantum im-
balance are also important factors. The rightmost set of
columns show the reason for serialization, broken down
into ownership page faults (Column 6) and system calls
(Column 7). In reactive workloads, most serialization
happens due to system calls, which is expected because
reactive workloads perform frequent I/O. Conversely,
for parallel workloads (except make), most serialization
is due to ownership page faults. Also, the fact that dOS
uses page-level ownership tracking can lead to unneces-
sary serialization due to false-sharing.

Even though serialization is very low in blackscholes,
the overheads are still on the order of 30%, largely be-
cause of single-stepping. Column 5 shows the fraction
of execution during which at least one thread is single-



Overheads Log Sizes (per day)
w/ w/o w/ w/o SMP-ReVirt

Benchmark FSSHIM FSSHIM FSSHIM FSSHIM (from [16])

fmm 6.0 6.0 1.1 MB 2.0 MB 83.6 GB
lu 2.4 2.4 11.0 MB 13.0 MB 11.7 GB
ocean 3.0 3.0 1.5 MB 3.6 MB 28.1 GB
radix 4.5 4.5 0.8 MB 2.1 MB 88.7 GB
water 4.8 4.8 5.3 MB 83.2 MB 58.5 GB
pbzip2 2.9 4.0 5.7 MB 295.7 GB —

Table 5. RECSHIM for Parallel Workloads (4 threads)

stepping; this varies from 0% to 39%. One interesting
trend is that reactive applications single-step less of-
ten; these applications perform system calls frequently,
which triggers an optimization to end quanta early (Sec-
tion 4.2). Note that single-stepping does not necessar-
ily correlate with performance because serialization and
quantum imbalance dominate. In addition to data shown
here, we measured the increase in frequency of total page
fault events due to ownership changes. While the fre-
quency is often higher, it was not directly correlated
with performance. Serialization, quantum imbalance,
and single-stepping are the dominant factors.

In summary, DPG overheads are reasonable for sev-
eral applications, including some parallel applications
and most reactive applications. Broadly, overhead tends
to increase with sharing, especially as the number of
threads grows. We did not attempt to optimize appli-
cations for more “determinism friendly” sharing, which
could improve performance.

Microbenchmark To more closely understand the over-
head of intercepting system calls with a shim, we wrote
a simple benchmark that does nothing but call getpid
in a loop. We ran this benchmark both in a DPG without
a shim, and in a DPG with a “null-shim.” The null-shim
configuration ran 5× slower, suggesting that dOS im-
poses an overhead of 5× on system call entry.

6.2 RECSHIM: Execution Recorder Shim
We next evaluated the overhead of using RECSHIM, and
its resulting log sizes. Table 5 characterizes RECSHIM
for parallel workloads. Columns 2-3 show the overheads
for RECSHIM with and without a deterministic file hier-
archy, respectively. These overheads are essentially iden-
tical to execution without RECSHIM (Table 3). Columns
4-5 show log sizes for a full day of execution. REC-
SHIM’s log sizes are very small because DPGs eliminate
internal nondeterminism; the remaining nondeterminism
is due to a few system calls such as gettimeofday.

Not making filesystem accesses deterministic (Col-
umn 5) increases the sources of nondeterminism, lead-
ing to larger logs. This is especially true for pbzip2,
which must log the entire ISO image. These log sizes,
however, are still orders of magnitude lower than the
sizes reported by SMP-ReVirt [16] (Column 6). This
is because SMP-ReVirt needs to record internal non-
determinism (again, especially shared-memory), which

Config Throughput Log Sizes
Num Threads w/ w/o w/

Benchmark Proc per Proc FSSHIM FSSHIM FSSHIM

apache 10KB 16 1 1.7K req/s 1.6K req/s 48.6 B/req
apache 10KB 4 4 2.3K req/s 2.1K req/s 51.3 B/req
apache 10KB 1 16 2.2K req/s 2.2K req/s 50.4 B/req

chromium nytimes 4.2 s 3.9 s 600 KB
chromium scripted 40 s 43 s 3.3 MB

Table 6. RECSHIM for Reactive Workloads

Config Throughput
1 replica 2 replicas

Nondet 386 req/s 373 req/s
REPLICASHIM 369 req/s 372 req/s

Table 7. Replicated Execution Overheads

can be massive. Since SMP-ReVirt is a hypervisor, it
logs nondeterminism internal to the OS, adding overhead
for radix that a process-level implementation of SMP-
ReVirt might be able to avoid. This is also an indication
that determinism enforcement at the hypervisor level is
likely to have a higher performance cost than when en-
forced at the process level.

Table 6 shows overheads and log sizes for RECSHIM
when running reactive applications. Columns 4-5 show
the throughput while recording, both with and without
FSSHIM enabled. With FSSHIM enabled, RECSHIM did
not reduce the throughput of the webservers from the
results shown in Table 2. However, disabling FSSHIM
resulted in a small performance decrease. The decreased
performance is due to the overhead of logging additional
input. The overheads for Chromium are about the same
as those seen in Table 2. Column 6 shows log sizes
normalized to the number of requests for the Apache
runs, as well as total log sizes for Chromium sessions.

6.3 REPLICASHIM: Replicated Execution Shim
We end our evaluation by investigating whether we can
we quickly build on DPGs to enable replication of an ex-
isting multithreaded application. To answer this, we built
and tested REPLICASHIM, which replicates our modified
nullhttpd. For a performance comparison, we also ran
replicas outside DPGs but still using the same arbiter and
replication protocol (Nondet). This configuration does
not provide any deterministic guarantees. Table 7 shows
the throughput for 1 and 2 replicas with 16 threads per
replica; each replica ran on a separate machine while the
arbiter ran on a third machine. In both cases, the through-
put is essentially matched. Note we did not spend much
time optimizing the arbiter or its simplistic protocol, as
REPLICASHIM is only as a proof-of-concept; the arbiter
is the major bottleneck in these experiments.

6.4 Summary
Our evaluation illuminated the impact of determinism
on application performance and scalability. Workload
is fundamental factor: applications with frequent inter-



thread or inter-process sharing will encounter more over-
head and worse scalability when executed deterministi-
cally, since this communication must be tracked and con-
trolled. Implementation choices also have a large impact.
We suspect that much of the overhead in dOS is not fun-
damental and might be mitigated by using sharing-aware
memory allocation, by fine-tuning integration with the
Linux scheduler, or by using potential upcoming hard-
ware support for transactional memory [2].

The choice of deterministic execution algorithm is
another factor. Algorithms like DMP-O that provide a
strict memory model or make heavy use of barriers will
likely perform worse than those that that loosen the mem-
ory model or rely on alternative mechanisms such as
speculation. dOS could have implemented the DMP-TM
and DMP-B algorithms we developed in earlier work [6,
14]. Both algorithms have better demonstrated scalabil-
ity than DMP-O and can both be implemented at the ker-
nel level, but both algorithms are more complex. The key
idea of DMP-B is to relax the memory model by using a
store buffer, which allows concurrent writes in the same
quantum round and therefore improves scalability. The
key idea of DMP-TM is to use transactional memory to
speculate that each quantum round is conflict-free and
thus can be executed in completely parallel.

7. Related Work
Deterministic Execution There are a few recent pro-
posals for removing internal nondeterminism in multi-
threaded execution. DMP [14] is a hardware proposal
that includes two approaches for deterministic execution:
DMP-O uses ownership tracking at a cache-line granu-
larity; DMP-TM uses transactional memory [33] to fur-
ther reduce the cost of determinism by speculating that
there is no communication between threads. Kendo [29]
proposes a software-only library that provides a set of
deterministic synchronization operations that offer some
deterministic guarantees for race-free programs. Core-
Det [6] proposed DMP-B and used compiler and run-
time system to provide determinism for arbitrary C/C++
programs. Grace [7] uses speculative execution to pro-
vide determinism for fork-join parallel programs. These
proposals all describe algorithms for execution-level de-
terminism, as used by DPGs. Unlike these prior propos-
als, however, DPGs support determinism beyond shared-
memory in arbitrary binary programs and also provide a
way to precisely control external nondeterminism.

Another approach is language-level determinism,
which uses a parallel language that is deterministic
by construction, such as StreamIt [41], SHIM [17],
NESL [10], Jade [35], or DPJ [11]. The prime trade-off
between execution-level and language-level determinism
is one of generality and controllability. In language-level
determinism, the programmer must use specific language

constructs but gets explicit control of which deterministic
executions are possible; in execution-level determinism
the programmer can use any language (i.e., determinism
is fully transparent) but cannot control which determin-
istic executions will happen, making behavior less pre-
dictable at program construction time. While determinis-
tic languages are a promising long-term solution, the ma-
jority of today’s programs are written in mainstream lan-
guages such as C++ or Java, and this will likely remain
the case for the foreseeable future. Additionally, parallel
languages are often domain-specific and not well suited
to general purpose, reactive applications; in contrast, we
have used dOS to demonstrate how reactive applications
can benefit from execution-level determinism.

Determinator [3] proposes to enforce determinism us-
ing a custom microkernel. Like dOS, Determinator sup-
ports multiple processes and uses page protection to en-
force determinism of shared-memory accesses. Determi-
nator supports both standard pthreads programs, via an
implementation of DMP-B, as well as programs written
using specialized parallel programming constructs that
are designed to be deterministic. Unlike dOS, however,
Determinator does not explore the separation between
internal and external nondeterminism, and further, Deter-
minator has no equivalent of the DPG shim layer inter-
face for precisely controlling external nondeterminism.

Record/Replay Record and replay is a natural way to
cope with internal nondeterminism during debugging.
There are many proposals for software-based implemen-
tations of record and replay. Some record all shared
accesses that lead to communication [22]; others as-
sume uniprocessor execution and record only schedul-
ing decisions [13]; others record only synchronization
operations [36]. The high overheads of logging shared-
memory communication motivated several proposals
for hardware-supported recording [24, 45, 46], includ-
ing some recent OS work on virtualization of hardware
mechanisms for recording [25].

More recent work [1, 31, 47] relaxes the guarantees
of replay by recording just a subset of the information
required for faithful deterministic replay. The result is a
smaller log at the cost of requiring a potentially impracti-
cal search of the execution space during replay. ESD [48]
uses symbolic execution to reconstruct thread schedules
given only a core dump, without requiring any execution
logs to begin with. Unfortunately, ESD suffers from the
incompleteness problems faced by symbolic execution,
and thus cannot guarantee that a suitable execution will
be found during replay.

Two recent and notable record/replay systems are
SMP-ReVirt [16] and Scribe [21]. Both systems use page
ownership similarly to dOS but record ownership transi-
tions rather than imposing a single deterministic order,
as in dOS. SMP-ReVirt is a hypervisor, and so it sup-



ports full-system replay only, while Scribe is a kernel ex-
tension, allowing it to support replay of process groups
much like dOS. Additionally, Scribe and dOS use similar
strategies to track ownership changes of kernel objects.

In contrast to all record/replay systems, the determin-
ism guaranteed by DPGs enables precise replay without
needing to record any internal nondeterminism.

Replicated Execution Most prior work in multithread-
ed replicas has taken the approach of recording and repli-
cating internal nondeterminism. Examples include sys-
tems that assume a uniprocessor [28, 40]; that assume
race-freedom [4, 5]; and that conservatively replicate
all potential shared-memory nondeterminism [39]. Re-
cently, Replicant [32] proposed a limited form of de-
terministic execution specifically for the purpose of de-
terministic replication, but this approach requires pro-
grammer annotations. Most recently, Respec [23] exe-
cutes replicas independently while periodically verifying
consistency; when consistency is violated, replicas are
rolled back to a consistent state and execution proceeds
more conservatively. Respec does not support replication
across more than one machine, limiting its usefulness.
In contrast to prior systems, the determinism offered by
DPGs naturally enables replication.

There are some parallels between how dOS provides
deterministic execution within a process group and how
toolkits like Isis [9] and Horus [42] provide virtually syn-
chronous execution to a distributed process group. Isis
provides totally ordered multicast primitives that guaran-
tee all processes see messages in the same order, a pow-
erful building block for consistent updates of distributed
replicas; dOS implements DMP-O to enforce a determin-
istic order on both implicit shared-memory and explicit
OS-channel communications between threads and pro-
cesses. Unlike dOS, Isis does not guarantee the deter-
ministic execution of a process or the deterministic tim-
ing of message delivery relative to processes’ instruction
sequence. Unlike Isis, dOS does not provide fault tol-
erance, distributed group membership services, or state
transfer to new group members.

8. Conclusions
We introduced the DPG abstraction, which allows pro-
grammers to define a deterministic box inside which all
communication happens deterministically. We described
the shim layer, an interface through which external non-
determinism can be observed and controlled by user-
space programs. We developed dOS, an implementation
of DPGs in Linux. We demonstrated the shim layer with
three applications: record/replay, multithreaded replica-
tion, and deterministic filesystem services.

Our evaluation showed that DPGs have reasonable
cost in reactive applications such as Apache and Chro-
mium, and also in several parallel workloads. This con-

ceivably enables deterministic execution in deployment,
which would fully leverage the benefits of determinism
in testing, reliability and debugging.
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