
Improving Server Software Support for Simultaneous
Multithreaded Processors

Luke K. McDowell, Susan J. Eggers and Steven D. Gribble

University of Washington
Department of Computer Science and Engineering

Box 352350
Seattle, WA 98195

{lucasm, eggers, gribble}@cs.washington.edu

ABSTRACT
Simultaneous multithreading (SMT) represents a fundamental shift in

processor capability. SMT's ability to execute multiple threads simulta-
neously within a single CPU offers tremendous potential performance ben-
efits. However, the structure and behavior of software affects the extent to
which this potential can be achieved. Consequently, just like the earlier
arrival of multiprocessors, the advent of SMT processors prompts a needed
re-evaluation of software that will run on them. This evaluation is compli-
cated, since SMT adopts architectural features and operating costs of both
its predecessors (uniprocessors and multiprocessors). The crucial task for
researchers is to determine which software structures and policies − multi-
processor, uniprocessor, or neither − are most appropriate for SMT.

This paper evaluates how SMT's changes to the underlying hardware
affects server software, and in particular, SMT’s effects on memory alloca-
tion and synchronization. Using detailed simulation of an SMT server
implemented in three different thread models, we find that the default poli-
cies often provided with multiprocessor operating systems produce unac-
ceptably low performance. For each area that we examine, we identify
better policies that combine techniques from both uniprocessors and multi-
processors. We also uncover a vital aspect of multi-threaded synchroniza-
tion (interaction with operating system thread scheduling) that previous
research on SMT synchronization had overlooked. Overall, our results
demonstrate how a few simple changes to applications’ run-time support
libraries can dramatically boost the performance of multi-threaded servers
on SMT, without requiring modifications to the applications themselves.

Categories and Subject Descriptors
C.1.4[Processor Architectures]: Parallel Architectures -- SMT
D.4.1[Operating Systems]: Process Management -- multiprocess-
ing, synchronization, threads.
D.4.2[Operating Systems]: Storage Management -- allocation/
deallocation strategies.

General Terms
Performance

Keywords
Simultaneous multithreading, servers, runtime support.

1 INTRODUCTION
The advent of multiprocessors drove new paradigms for soft-

ware architectures. In order to take advantage of potentially linear
program speedups through parallel execution, programmers
decomposed their single processor applications into multiple pro-
cesses, and used synchronization primitives to control access to
shared, writable data. However, SMP’s parallel hardware provided
more than the opportunity and challenge of executing duplicated
processes concurrently. Because of the fundamental change to the
underlying hardware, what was previously cheap on a uniprocessor
(for example, repeated accesses to cache-resident data) often
became expensive on a shared memory MP (interprocessor com-
munication over a processor-shared bus), and vice versa. To realize
the speedups promised by the hardware, the software had to
change in fairly fundamental ways. Consequently, over the past
few decades, researchers have developed algorithms and data
structures to enable software to adapt to multiprocessor hardware
configurations, and also to take advantage of and avoid the pitfalls
of the differences between multiprocessors and uniprocessors.

Simultaneous multithreading (SMT) [43] represents another
such shift in the underlying hardware, and therefore prompts a sim-
ilar exploration into software design and support. Here, however,
the situation is more complicated, since SMT adopts some archi-
tectural features and operating costs of both of its predecessors.
Like a multiprocessor, SMT executes multiple threads of control,
and instructions from these threads execute in parallel; however,
SMT's thread-shared data structures are more effectively utilized if
they are organized so as to encourage sharing (even false sharing!),
as is often the default organization on uniprocessors [31]. The cru-
cial task for researchers is to determine which software data struc-
tures and policies, multiprocessor, uniprocessor, or neither, are
most appropriate for SMT.

To address this challenge, this paper investigates the perfor-
mance impact and optimization of three software issues that SMT
hardware affects: dynamic memory allocation, stack allocation and
thread synchronization. For all three, we consider specific design
issues that may be trouble spots for threaded applications execut-
ing on SMT processors. First, how should dynamic memory allo-
cation be implemented? Are SMP-like allocators appropriate, or do
the unique features of SMT change the story? Second, how do
SMT's thread-shared caches impact the design of static memory
allocation, and in particular, thread stack allocation? Third, how
should threads or processes synchronize on an SMT? Should
threads block or spin? Should the algorithms involve the operating

This work was supported by an NSF Graduate Research Fellowship for
Luke McDowell, an IBM Faculty Partnership Award for Susan Eggers, and
NSF grants ITR-0085670 and EIA-9632977. We’d also like thank the
anonymous reviewers for their helpful comments on the paper

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
PPoPP'03, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006...$5.00.

system, and to what extent are specialized hardware structures nec-
essary for good performance? Once we have answered the above
questions, we then consider the issue of where the resultant SMT-
aware policies should be implemented: in the application, in appli-
cations’ run-time libraries (e.g., libC or pthreads), or in the operat-
ing system.

For each of the three design issues (dynamic memory alloca-
tion, static memory allocation, and thread synchronization), we
explain how SMT is different from uniprocessors and SMPs, eval-
uate how previously proposed mechanisms may or may not be
appropriate for SMT, and propose new mechanisms specifically
designed to take advantage of unique SMT architectural features.
To highlight the potential impact of each of these factors, we
present a case study based on the most likely near-term application
target for SMT: server software. Because the software architecture
of server programs has a strong interaction with each of the design
issues we examine, our case study evaluates three different thread
models: a multi-process architecture, a multi-threaded architecture,
and an event-based architecture.

Overall, our goal is to identify the minimal set of changes that
enables applications written for a uniprocessor or a shared memory
multiprocessor to achieve good performance on an SMT. Our
results demonstrate that SMT-aware memory allocation is essential
for good SMT performance and that tuned static memory alloca-
tion and synchronization policies raise that level even higher. We
find, however, that a few simple changes to the run-time system
can provide performance very close to this.

The next section reviews the SMT architecture and examines
its effect on memory allocation and synchronization. Section 3
explains the three types of thread models we use for our case study,
and Section 4 discusses our methodology. Section 5 presents our
case study results, while Section 6 reflects on these results and
makes recommendations for SMT runtime support. Section 7 dis-
cusses related work and Section 8 concludes.

2 PERFORMANCE IMPLICATIONS OF
SMT’S ARCHITECTURE

In this section we first provide a very brief overview of SMT
processors. We then examine more closely the relevant differences
between SMT, uniprocessors, and SMPs as they affect dynamic
memory allocation, stack allocation, and synchronization. To con-
clude each section we summarize the different policies that we use
in our evaluation.

2.1 SMT Overview
SMT is a latency-tolerant processor that fetches, issues and

executes instructions from multiple threads each cycle. The pro-
cessor state for all executing threads, called hardware contexts,
resides on the CPU, enabling SMT to process instructions from the
different threads without resorting to either software or hardware
context switching, as is the case for single-threaded uniprocessors
or traditional multithreaded processors [1, 2], respectively. This
unique feature provides better utilization of execution resources by
converting the thread-level parallelism provided by the multiple
processor-resident threads into cross-thread instruction-level paral-
lelism. Previous research has established SMT as effective in
increasing instruction throughput (i.e., two- to four-fold speedups)
on a variety of workloads (including scientific, database, and web
servers, in both multiprogrammed and parallel environments),

while still providing good performance for single-threaded appli-
cations [42, 30, 31, 29].

For our purposes, the most important feature of SMT’s archi-
tecture is that all contexts dynamically share most processor
resources, including the functional units, caches, TLBs, and fetch
bandwidth. The sharing of caches, in particular, makes inter-thread
data communication and synchronization potentially inexpensive.

2.2 Dynamic Memory Allocation
For a variety of reasons (see Section 3), many server applica-

tions make heavy use of dynamic memory allocation, and thus
their overall performance can be strongly influenced by allocator
design. Important performance factors for an allocator include:

1. Speed − how much time is required to allocate and deallo-
cate a single memory object?

2. Concurrency − to what extent do multiple threads allocate or
deallocate memory simultaneously?

3. Data locality − does the allocator induce good or bad data
locality for allocated objects within a single thread?

4. False sharing − do allocations by multiple threads result in
false sharing (i.e., two threads accessing logically distinct memory
that resides in the same cache line)?

5. Fragmentation − how much memory must the allocator
request from the operating system in order to satisfy the total mem-
ory needs of an application?

6. Thread independence − may objects allocated by one thread
be passed to and freed by another thread?

Some of these issues have impact regardless of the underlying
hardware architecture. For instance, maximizing data locality and
minimizing fragmentation are always beneficial, especially with
very large data working sets. Maximizing allocator speed is also
important, particularly for servers that allocate and deallocate fre-
quently. Finally, thread independence of memory objects is essen-
tial for enabling flexible server design, as argued by Larson and
Krishnan [26].

For other memory allocation issues, however, server perfor-
mance depends heavily upon the underlying hardware. For a uni-
processor, allocator concurrency is of little concern, while on an
SMP or SMT, it is essential to performance. Previous research has
demonstrated that enabling such concurrency for SMPs depends
upon reducing inter-processor data sharing, both true sharing of
allocator data structures (e.g., free lists and locks) [26] and false
sharing of allocated memory [6]. For an SMT processor, however,
the existence of a single, thread-shared cache eliminates the perfor-
mance penalty of true or false sharing. In fact, prior work has
shown that false sharing can improve performance on an SMT
[31], because it enables threads to implicitly prefetch data for each
other. Consequently, while an SMT processor needs an allocator
with good concurrency, using an SMP allocator that reduces inter-
processor sharing may be unnecessary or even harmful on an SMT.

To address the various needs discussed above, researchers
have designed a wide range of memory allocators; Table 1 shows
those that we consider in this work. In the simplest case, Serial,
only one thread may access the memory allocator at a time. Such
allocators may be extremely fast for single-threaded programs
[28]. In this work, however, we do not consider it further, since our
results show that significant allocator concurrency is essential for
good performance on SMT.

The next two allocators, BaseAlloc and FirstFit, both provide

a single heap that contains multiple free lists, where each list is
responsible for memory objects of a given size. Because each free
list is guarded by its own lock, multiple threads may access the
heap simultaneously. BaseAlloc always chooses the free list whose
elements are closest to the requested memory size, while FirstFit
will consider the free lists of larger-sized objects if the optimal free
list is already in use by another thread. BaseAlloc is the standard
allocator provided by Compaq's C++ for multiprocessor Alpha
systems, while FirstFit is a variant of BaseAlloc specifically
intended for “multithreaded applications making heavy use of ...
malloc functions.” [12]

The next three allocators use multiple heaps to reduce conten-
tion, all modeled after BaseAlloc. Each allocator has a fixed set of
heaps, and follows a different policy to determine which heap to
choose for an allocation (in our implementation, an object is
always freed to the heap from which it originated, so the policy
directly affects only allocations). StaticHeap assigns each thread to
its own heap, while RoundRobin always chooses a different heap
in round-robin order. We designed a new concurrent allocator,
DynamicHeap, that combines these features by reassigning a
thread to a new heap (chosen in round-robin order) after every N
allocations.

To ensure fair comparison, all of our allocators use the same
underlying allocation code, but with different heap organizations
and options. Our intent is not to select or design the optimal mem-
ory allocation algorithm for SMT processors, but rather to identify
how important features of any such algorithm interact with the
architecture. For instance, both RoundRobin and DynamicHeap
are poor choices for SMP allocators, because they actively induce
false sharing among threads [6]. Since each heap allocates data to
all threads over time, objects within the same cache block may be
allocated to threads running on different processors. In addition,
these allocators utilize frequently-written global data structures to
make heap assignment decisions, a potential coherency bottleneck
on SMPs. On an SMT, however, both of these sharing issues may
actually improve rather than hinder performance. Section 5 evalu-
ates their actual performance on SMT.

2.3 Static Memory Allocation
The layout of per-thread statically allocated data, such as

stacks and global variables, also affects program performance. To
some extent, this factor is simpler than dynamically allocated data.
Since all allocation occurs just once, at program start-up, alloca-
tion speed and concurrency are not a concern. However, because
statically allocated data items (particularly stacks) are accessed
frequently, their layout can impact overall cache behavior.

On a uniprocessor, compilers and application designers try to
maximize intra-thread spatial and temporal locality by placing
allocated data items that are used together contiguously in mem-
ory. For an SMP, the additional need to avoid false sharing
between threads on different processors leads to the use of data
restructuring techniques, such as group and transpose, indirection,
and padding data structures to fill out cache lines [20, 3].

On an SMT processor, while inter-thread locality is important,
false sharing is not. Instead, SMT processors face potential perfor-
mance problems when the data structures of different threads or
processes conflict in the cache. For instance, Lo et al. [29] identi-
fied stack conflicts as a significant performance problem in a
multi-process database workload. In that case, conflicts arose
because the stack of each process resided at the same virtual
address, and thus conflicted in the virtually-indexed, level-1

cache1. In our evaluation we identified a related but new source of
stack conflicts for multithreaded applications that arises despite
stacks having different virtual addresses. Section 5 discusses the
causes of these conflicts and evaluates how stack offsetting can
reduce them.

2.4 Synchronization
Factors that affect the relative performance of synchronization

techniques include:
1. Overhead − what is the cost to acquire and release an uncon-

tended lock?
2. Contention − how does synchronization performance vary

as multiple threads contend for the same lock?
3. Performance interaction − how does the behavior of one

thread processing synchronization operations affect the execution
of other threads?

4. Scheduling − how do the synchronization mechanisms com-
municate with the operating system and/or run-time thread sched-
ulers?

The impact of all these factors depends upon the underlying
hardware architecture. On an SMP, for instance, in-cache spinning
on a lock variable may offer low-overhead synchronization when
contention is low, but generate performance-degrading coherence
traffic when contention is high [16]. Consequently, researchers
have proposed techniques, such as queue-based locks [22] to
reduce bus traffic, and data co-location [22] to reduce overall criti-
cal section time. On a single SMT processor, techniques to

Table 1: Dynamic memory allocation schemes.
Allocator Description In the spirit of...

Single Heap Allocators

Serial Only one thread may access the heap at a time. Solaris, Lea’s Malloc [28]

BaseAlloc Single heap, but multiple free lists for objects of different sizes. Compaq Alpha C++

FirstFit Like BaseAlloc, but will use free list for larger-sized objects if necessary. Optional with Alpha C++ [12]

Multiple Heap Allocators

RoundRobin Each new allocation selects a heap in round-robin order. MTmalloc [34]

StaticHeap Each thread is assigned to a unique heap. Hoard [6], Vee and Hsu [45]

DynamicHeap Threads initially assigned to a heap, but reassigned after every N allocations. New to this work

1 Such conflicts can also occur on an SMP, but have little perfor-
mance effect, because only one process utilizes the cache at any
instant in time.

decrease inter-processor bus traffic are unnecessary. However, syn-
chronization primitives that rely on spinning may still degrade per-
formance, since a context that passes time by spinning consumes

execution resources that may be better used by other contexts [38].
Consequently, SMT researchers have proposed a hardware lockbox
that blocks a waiting thread, preventing it from utilizing any hard-
ware resources until it acquires the needed lock [44, 11]. Although
synchronization is a more important issue on these processors, it is
necessary even on a uniprocessor to guarantee mutual exclusion
between threads in the face of context switches and interrupts.

Furthermore, when the number of executing threads is greater
than the number of processors or hardware contexts, lock mecha-
nisms must also consider how to interact with various thread
schedulers. On a uniprocessor, the decision is trivial; if a lock is
not available, the thread should immediately block, since the
thread holding the lock cannot release it unless it is given the
chance to execute. For an SMP, a better strategy is to spin for a
short period of time before blocking. Deciding how long to spin
involves a trade-off between minimizing context switch overhead
and maximizing useful work.

For an SMT processor, these decisions are complicated by the
lockbox, which affects thread scheduling in two ways. First, block-
ing a thread in hardware prevents it from degrading the perfor-
mance of other executing threads, but excludes another thread
from that context. Thus, an important extension may be to augment
hardware blocking with a time-out. This enables a new type of
synchronization mechanism, HW-lock-then-block, which is analo-
gous to the software-only Spin-then-block. Second, the lockbox
affects thread scheduling by arbitrating among different threads
competing for a lock. For instance, the lockbox may grant lock
requests in FIFO order, to preserve fairness. Alternatively, favoring
waiting threads that are still context-resident (instead of swapped
out by the operating system) may improve performance by reduc-
ing context switch overhead.

In this work, we evaluate the five synchronization mechanisms
shown in Table 2. SW-block is the default mechanism provided on
Tru64 UNIX (implemented as pthread_mutex_lock()),
which serves as our baseline. SW-spin and SW-spin-then-block rep-
resent reasonable synchronization mechanisms for an SMP proces-
sor, while HW-lock and HW-lock-then-block attempt to improve
upon these mechanisms by eliminating spinning.

3 SERVER SOFTWARE ARCHITECTURE
Server applications, including web servers, search engines,

and databases, represent an increasingly important class of com-
mercial applications. Previous work has shown that SMT is partic-
ularly effective on these workloads, because a server’s multiple
outstanding requests provide a natural source of thread-level paral-

lelism for hiding cache latencies [39, 29]. Furthermore, modern
server applications are likely to have very high rates of memory
allocation (and thus of synchronization within the allocator as
well), both because they are often written in an object-oriented
style and because the unpredictable nature of requests and
responses require flexible allocation of memory on demand [26].

To achieve high performance, a server application must be
written in a way that exposes the workload’s natural parallelism.
Traditionally, servers use either a multi-process (MP) or a multi-
threaded (MT) thread model (see Pai et al. [35] for an overview).
In the multi-process approach, each incoming request is assigned
to a process with its own distinct address space, resulting in little if
any direct interaction between separate processes. In the multi-
threaded approach, each incoming request is assigned to a unique
thread, but all threads share a common address space, which
causes some degree of interaction between the threads (because
they share memory) and enables software optimizations, such as a
thread-shared software result cache. More recently, researchers
have proposed using an event-based software architecture for
server systems, both for improved robustness and fairness [46] and
for improved performance [27]. Like a multithreaded software
architecture, these event-based approaches use a shared address
space, but decompose each request into a number of events that are
multiplexed among a small number of threads to minimize con-
text-switching costs. This decomposition exposes similar computa-
tions across multiple client requests (threads), allowing the
construction of intelligent policies that improve locality and per-
formance by scheduling related events both consecutively and, on
an SMT, simultaneously [27, 32]. Consequently, unlike the previ-
ous two approaches, the threads in an event-based server have a
high degree of interaction.

Choosing the appropriate thread model for a server is a com-
plex decision influenced by many factors including performance
constraints, software maintainability, and the presence of existing
code. In this work we evaluate all three thread models. Our intent
is not promote any model over the other, but to use the different
characteristics of each model to examine the extent to which the
interaction between different threads or processes impacts memory
allocation and synchronization on SMT.

4 METHODOLOGY
4.1 Simulator

Our SMT simulator is based on the SMTSIM simulator [43]
and has been ported to the SimOS framework [39]. It simulates the
full pipeline and memory hierarchy, including bank conflicts and
bus contention, for both the applications and the operating system.
The simulation of the operating system enables us to see OS

effects on synchronization overhead and memory allocation.

Table 2: Synchronization primitives. For this work we configure SW-spin-then-block and HW-lock-then-block to wait
for approximately 1500 cycles, about the amount of time needed to perform a context switch, before blocking.

Synchronization Primitive What to do if lock is unavailable Spin? Block to OS?

SW-block Block immediately to the OS. no immediately

SW-spin Repeatedly spin in software until lock is available. yes no

SW-spin-then-block Spin up to K times, then block to OS if necessary. yes after K spins

HW-lock Block in hardware until lock is available. no no

HW-lock-then-block Block in hardware for up to T cycles, then block to OS if necessary. no after time-out of T cycles

The configuration for our experiments is shown in Table 3.
The most important parameters for this study are the number of
contexts and the size of the L1 caches. Most machine parameters
are similar to the previously planned Alpha 21464 [36].

Our studies focus on CPU and memory performance bottle-
necks. In the interest of simulation time, we simulate a zero-
latency disk, modeling an in-core database. This choice does not
unduly influence our results, because the total working set of our

application (around 150 MB) easily fits within main memory.

4.2 Workload
For our case-study, we constructed three different versions of

htdig [18], a popular search engine typically used to index and
search a single site. This choice is appropriate for studying servers,
because it has significant amounts of concurrency, is based on an
object-oriented design, and exercises the operating system for both
disk and network I/O. To create the multithreaded and multi-pro-
cess versions, we made minor changes to the original CGI program
to enable it to handle multiple requests simultaneously, using either
threads or processes. For the event-based version, we manually
decomposed the search process into 11 “stages” and constructed
the application using an event-based application toolkit [32]; the
thread scheduling policy was designed to encourage the simulta-
neous execution of related events to improve cache locality.

Our case-study server stresses both memory allocation and
synchronization. The server requires an average of 15,000 memory

allocations per request, causing it to spend about 36% of its time in
the allocator. This represents a very allocation-intensive workload,

but not unreasonably so1. In addition, synchronization in our appli-
cation is dominated by locks in the memory allocator. Each request
requires approximately 27,000 lock operations, 88% of which are
due to memory allocations. Locks are held for an average of 125
instructions.

We configured the MT and MP servers to use eight threads or
processes, respectively, because we found that this was the mini-
mum necessary to ensure that the processor was fully utilized. In
order to minimize context switching overhead and provide maxi-
mum flexibility for the event scheduler, we configured the event-
based server with just four primary threads (the same as the num-
ber of SMT contexts). For the multiple-heap allocators, we used
twice as many heaps as threads (as is done in Berger et al. [6]).

Due to the lack of standard benchmarks for search engine per-
formance, we constructed our own workload based on actual
searches related to web pages in our department. We first used
htdig to construct a searchable database of all the HTML content in
our department. Next, we examined a daily departmental web log
to find all Google search queries that resulted in a page view at our
site, yielding a set of 1711 queries. To enable tractable simulation
time, we eliminated all queries that required more than three times
the average number of instructions to execute. This eliminated 79
(4.6%) of the queries. Simulations run with the full query set vs.
the reduced query set showed that the overall performance impact
of this change was only 2%.

4.3 Metrics
Server performance is often reported in terms of raw through-

put (e.g., the number of requests processed over some time period).
For two reasons, however, this metric does not accurately reflect
performance for our experiments. First, not all requests represent
an equal amount of work. For instance, in our workload, the most
expensive requests require more than 30 times as many instruc-
tions as the least expensive. Second, not all request processing
completes during the simulation. For instance, a request may be
largely processed during the simulation, but actually complete just
after the experiment ends (and thus not be counted by a raw
throughput measure). Despite our comparatively long simulations
(in the billions of cycles), we execute at most hundreds of requests
and thus both of these effects can be significant.

We instead report results in terms of normalized request
throughput, which is calculated as follows. We first warm-up the
server by executing until the server has completed 200 requests,
and then simulate in detail for 2 billion cycles. Within this time, we
define a 1-billion cycle experimental window starting at 500 mil-
lion cycles. To limit simulation time, results for the sensitivity
analyses in Section 5.5 were based on a window size of 500 mil-
lion cycles.

Normalized throughput is then calculated as the sum, for all
requests, of the fraction of each request that was processed during

the window, multiplied by the weight of the request2. Weights are

Table 3: SMT configuration parameters.
CPU

Thread Contexts 4

Pipeline 9 stages

Fetch Policy 8 instructions per cycle from up to 2 contexts [42]

Functional Units 8 integer (including 4 Load/Store and
1 Synch. unit); 4 floating point

Instruction Queues 32-entry integer and floating point queues

Renaming Registers 100 integer and 100 floating point

Retirement bandwidth 12 instructions/cycle

TLB 128-entry ITLB and DTLB

Branch Predictor McFarling-style, hybrid predictor [33]

Local Predictor 4K-entry prediction table indexed by 2K-entry his-
tory table

Global Predictor 8K entries, 8K-entry selection table

Branch Target Buffer 256 entries, 4-way set associative

Cache Hierarchy

Cache Line Size 64 bytes

Icache 64KB, 2-way set associative, single port

2 cycle fill penalty

Dcache 64KB, 2-way set associative, dual ported. Only 1
request at a time supported from the L2

2 cycle fill penalty

L2 cache 16MB, direct mapped, 20 cycle latency, fully pipe-
lined (1 access per cycle)

MSHR 32 entries for the L1 caches, 32 entries for L2

Store Buffer 32 entries

L1-L2 bus 256 bits wide, 2 cycle latency

Memory bus 128 bits wide, 4 cycle latency

Physical Memory 512MB, 90 cycle latency, fully pipelined

1 For instance, Berger et al. [8] found that a range of applications
spent 0% to over 40% of their execution time performing alloca-
tor operations (with an average of 16%), even though they used
optimized custom allocators.

based upon the number of instructions required to execute each
request on a single-threaded superscalar. We found that this metric
produced consistent results (within 2%) for repeated simulations
on different portions of the query input set.

5 CASE-STUDY RESULTS
We first present data for the multithreaded server model, com-

paring it to the multi-process server. After drawing conclusions
from these results, we then present data for the event-based server
that both confirm the conclusions and highlight how different
thread models can stretch an SMT processor in other ways. Finally,
we provide sensitivity analyses that examine the extent to which
our results depend on particular memory allocation parameters.

5.1 Effects of Dynamic Memory Allocation

We first examine dynamic memory allocation, since our
results indicate that it has the most significant effect on perfor-
mance. Figure 1 shows request throughput for the multithreaded
(MT) server for each of the five dynamic memory allocators dis-
cussed in Section 2.2. Since each process in the MP server has its
own address space (and thus its own private allocator), there is no
need to change its allocation strategy; instead, we show MP results
using just the baseline allocator, BaseAlloc, a common choice for
SMPs. All experiments use the default synchronization and static
memory allocation schemes, SW-block and no offsetting, and are
executed on the SMT simulator.

The results demonstrate that on SMT the MT server has very
poor performance with single-heap allocation (BaseAlloc and
FirstFit), compared to MP, achieving only 7% to 29% of MP's
request throughput. However, using any of the multiple-heap allo-
cators improves MT's performance by more than an order of mag-
nitude, enabling MT to outperform MP by 8% to 26% for our
benchmark.

The single-heap allocators perform poorly on the MT server
because a single heap does not provide enough allocator concur-
rency to fully utilize a processor such as SMT. Instead, threads

often wait to access the allocator, leading to frequent context
switches and idle time. For BaseAlloc, this problem is so severe
that the server spends only 17% of its time in user-level code
(where almost all search engine activities take place), compared to
a minimum of 86% for the multiple-heap allocators. At first
glance, this result may seem surprising, given BaseAlloc's use of
multiple, independent free-lists. However, previous research has
found that programs often allocate the vast majority of all objects
from just a few object sizes [21], which greatly decreases the util-
ity of multiple free-lists. Our own experiments confirmed this,
showing that about 50% of all allocations in BaseAlloc involved
the same free-list, and 75% involved just two free-lists. FirstFit's
more flexible choice of a free list reduces allocation contention,
increasing performance more than four-fold, compared to BaseAl-
loc. Contention still remains significant, however, because, even
though FirstFit always has a choice of free lists when allocating a
new object, deallocations must return objects to their originating
list. If the original list is already in use, contention occurs.

In contrast, the multiple-heap approaches greatly increase allo-
cator concurrency by eliminating the single-heap bottleneck. Con-
sequently, all multiple-heap allocators see vastly improved
performance over BaseAlloc and FirstFit. Within these allocators,
however, secondary performance effects remain. Most signifi-
cantly, RoundRobin suffers from poor data locality, because con-
secutive allocations from the same thread are likely to come from
different heaps. This effect causes the miss rate in SMT’s thread-
shared data TLB to increase from 0.2% for StaticHeap to 1.5% for
RoundRobin; likewise, in the thread-shared data cache the miss
rate increases from 8.4% to 11.9%. Consequently, StaticHeap out-
performs RoundRobin by 17%.

Despite also allowing threads to allocate memory from multi-
ple heaps over time, DynamicHeap preserves data locality by mak-
ing multiple allocations before switching to another heap. As a
result, it has data TLB and cache miss rates of just 0.6% and 9.3%,
respectively, and outperforms RoundRobin by 14%. Dynam-
icHeap's heap assignment policy does, however, slightly increase
contention for new allocations compared to StaticHeap, leading to
a small 4% performance difference. The next section and Section
5.4 revisit this issue, exploring ways of mitigating this contention
and pinpointing situations in which DynamicHeap's different allo-
cation style actually leads to a performance gain.

Finally, the multi-process server's performance is lower than
that of the multiple-heap allocators with MT, because its separate
address spaces eliminate much of the potential for sharing in
SMT’s L1 data cache. This produces an average memory access
delay that is 31% to 79% higher than the MT multiple-heap alloca-
tors, and thus an overall IPC that is 8% to 19% lower.

In summary, even on an SMT processor where sharing is bene-
ficial and synchronization requires no inter-processor communica-
tion, the most aggressive single-heap allocators still provide too
little concurrency for a multithreaded application with demanding
amounts of memory allocation. On the other hand, multiple-heap
allocators with large amounts of concurrency produce good perfor-
mance. This performance can be marred, however, by a loss in data
locality induced by an allocator with no affinity between threads
and heaps. (Section 5.5 examines both of these issues in more
detail to evaluate how much thread/heap affinity and what level of
allocator concurrency are necessary to ensure good performance.)
Finally, a multi-process thread model can effectively use the sim-

2 We utilize request completions (i.e., a client request was pro-
cessed) rather than an IPC-based metric (as in Tullsen and Snave-
ly [40]), because, for our workload, lock spinning or operating
system activity may artificially inflate thread IPC.

Figure 1. Server request throughput when varying
dynamic memory allocation strategies. The MP server
uses only BaseAlloc, since processes do not share
dynamically allocated memory.

0

20

40

60

80

100

120

140

160

180

MP MT

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

BaseAlloc FirstFit RoundRobin StaticHeap DynamicHeap

pler single-heap memory allocator, but it performs less well than a
well-configured multithreaded application.

5.2 Effects of Synchronization Strategies

The previous section demonstrated that the choice of memory
allocator is a crucial factor affecting the performance of a multi-
threaded server executing on an SMT processor. Now that we have
identified several memory allocators that alleviate this potential
bottleneck, we investigate the extent to which synchronization
affects the performance of the improved system.

Figure 2 shows the results from evaluating synchronization
policy, using the mechanisms in Table 2 and the best MT and MP
memory allocators. Within in each group, the first bar is the perfor-
mance for the baseline synchronization mechanism, SW-block,
and is thus equivalent to the results from Figure 1. The next two
bars are strategies that involve spinning, while the final two use
SMT hardware locks.

Lock contention in our server is primarily due to memory allo-
cation. Since the MP server has no allocator contention, its results
reflect the direct, uncontended overhead of the synchronization
policies, while the MT results show performance under various
degrees of thread contention.

The MT results highlight (1) the downside of spinning and (2)
the importance of blocking to the operating system. As expected,
Spin-only has very low performance, because it steals hardware
resources from threads in other hardware contexts and prevents
other runnable threads from context switching into its own. Spin-
then-block, however, has surprisingly good performance, in fact,
comparable to the best strategies that use hardware locks, despite
its initial spinning. This is because the extra overhead of spinning
is small compared to the benefits of relinquishing the SMT context

to a thread that can do useful work.1

HW-lock, on the other hand, has very unpredictable perfor-
mance, sometimes outperforming all other synchronization
schemes (with StaticHeap), sometimes doing considerably worse
than the best strategy (39% worse with RoundRobin and 52% with
DynamicHeap). Because HW-lock never communicates with the
operating system, it can potentially be blocked for a very long time

if waiting for a lock that is held by a thread not currently sched-
uled. We have observed pathological cases in which a hardware-
locked thread prevents the thread holding the lock from executing
for hundreds of millions of cycles. While the astute programmer
may be able to avoid these situations with careful thread manage-
ment, a much better choice is to use HW-lock-then-block. This
mechanism both eliminates spinning and yields to the operating
system scheduler when necessary, thus producing good results for
StaticHeap and the best results for RoundRobin and DynamicHeap
(where contention is more of an issue than with StaticHeap).

To some extent, our results may underestimate the perfor-
mance benefits of hardware locks without blocking. In our applica-
tion, the distribution of allocation requests across multiple heaps
significantly reduces lock contention. With multiple-heap alloca-
tors, virtually all locks are already available when requested, and
are held for a significant period of time (relative to lock acquisi-
tion) before they are released. For non-server applications, such as
loop-based scientific programs, that have more lock contention and
shorter critical sections, lock acquisition overhead is more signifi-
cant and hence the impact of using spinning vs. efficient hardware
locks is much larger [44].

Finally, note that optimizing the synchronization strategy had a
small but noticeable effect on the relative performance of the dif-
ferent dynamic memory allocation schemes. With the baseline syn-
chronization strategy used in Figure 1, we found that
DynamicHeap lagged behind StaticHeap, because it slightly
increased contention. Figure 2, however, demonstrates that
improving the synchronization strategy to HW-lock-then-block
enables DynamicHeap to match the performance of the best-case
for StaticHeap. Section 5.4 considers the relative merits of Stat-
icHeap vs. DynamicHeap in more detail.

Overall, our results demonstrate that, for a multithreaded
server application where dynamic memory allocation is the domi-
nant performance factor, proper allocator design may reduce lock
contention enough that the efficiency of the synchronization mech-
anism is a second-order effect, even on an SMT, where primitives
based on spinning can delay non-spinning threads. Instead, to
obtain the best performance, the key synchronization requirement
is the ability to yield to the OS thread scheduler for scheduling
decisions, whether spinning or hardware-blocking. Consequently,
if SMT hardware locks are used, they must provide a time-out fea-
ture to enable this interaction. However, that being said, for both
multi-process and multithreaded servers, many of the better syn-
chronization alternatives have roughly comparable performance,
thus affording SMT programmers and hardware designers consid-
erable leeway in choosing a synchronization mechanism.

5.3 Improving Static Memory Allocation
As discussed in Section 2.3, the default stack layout produces

cache conflicts for the multi-process thread model, because each
process stack uses the same starting virtual address. In addition,
our experiments identified a (related) source of stack conflicts for
multithreaded applications on SMT. We found that for all MT
server alternatives, the threads' stacks completely overlapped in
the L1 cache, despite having different virtual addresses. The con-
flicts arose because the operating system created each new stack
precisely 64 KB apart from the previous stack. Consequently, our
virtually indexed, 64 KB L1 data cache experienced very frequent
conflict misses.

Figure 2. Server request throughput from varying the
synchronization policy for the MP and MT servers.

1 We utilized simple hand-coded spin locks. Careful tuning might
achieve some performance gains, but would not affect the relative
importance of blocking to the operating system.

0

20

40

60

80

100

120

140

160

180

200

MP BaseAlloc MT RoundRobin MT StaticHeap MT
DynamicHeap

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

SW-block SW-spin SW-spin-then-block HW-lock HW-lock-then-block

The conflict misses can be avoided using application-level off-
setting, similar to that used by Lo et al. [29], which shifts the stack
of each thread by the page size times the thread creation order. In
our case, we shifted each of the eight threads' stacks, so that each
stack mapped to a different eighth of the L1 data cache. Table 4
shows the performance impact of using this offsetting to reduce
cache conflicts on SMT. We show results for the MP server with
the baseline allocation and synchronization schemes, and for the
MT server with the two best allocation and synchronization
schemes from the previous sections. The last column represents the
total performance gain from using offsetting compared to the base-
line behavior.

The data shows that the improved stack layout reduces cache
misses; for instance, the L1 data miss rate decreased from an aver-
age of 8.9% to an average of 4.7% for the multithreaded servers,
and from 14.3% to 10.9% for the multi-process server. Conse-
quently, overall performance improved by between 6% and 10%
for MT and 3% for MP. Note that the performance improvements
would have been greater had our caches been direct-mapped;
instead, the 2-way set associativity permitted related cache lines
from up to 2 threads to reside in the cache simultaneously.

Thus, while the default stack layout policies for a multiproces-
sor operating system may easily induce performance problems for
either multi-process or multi-threaded servers on SMT, simple,
cache-conscious techniques to reduce stack conflicts can improve
the situation for both thread models.

5.4 Results for the Event-Based Server

The previous sections identified a number of important guide-
lines for dynamic and static memory allocation and synchroniza-

tion for multithreaded and multi-process SMT servers. We now
validate and explore these findings with an event-based version of
the same server. Because the event-based server is also based on
threads, we expect to find similar trends. Nonetheless, threads in
an event-based server interact more frequently than those in the
other thread models, and thus may stress the machine in different
ways.

Figure 3 contains results for the event-based server for each of
the five dynamic memory allocations strategies, without applica-
tion offsetting. For the three multiple-heap allocators, we also
show results from varying the synchronization strategy. (All syn-
chronization schemes performed equivalently with single-heap
allocation.). The results confirm that the single-heap allocators
(BaseAlloc and FirstFit) are insufficient for MT or event-based
servers, and that the performance of RoundRobin lags behind the
other multiple-heap allocators, because it suffers from poor data
locality. In addition, we see some of the same general trends for
synchronization: spinning has very poor performance, and limited
spinning (Spin-then-block) performs quite well. However, unlike
the MT experiments, HW-lock always has reasonable perfor-
mance; because the event-based experiments execute with only
four major threads, there is no need to block to the operating sys-
tem. Other experiments with eight threads (data not shown) more
closely match the MT results.

Unlike with MT, the DynamicHeap allocator in the event-
based thread model obtained significantly higher request through-
put than StaticHeap. StaticHeap's performance suffers from con-
tention when one thread allocates a number of objects which are
then passed to and freed by other threads. This type of producer-
consumer behavior was identified by the StaticHeap-like Hoard [6]
as producing their worst-case behavior. In essence, allocators like
StaticHeap guarantee that allocations, but not necessarily dealloca-
tions, by different threads do not conflict. In contrast, Dynam-
icHeap permits some conflicts for allocations in order to reduce
deallocation conflicts. This effect is particularly important for
event-based servers, which execute identical or related pieces of
code (such as resource deallocators) simultaneously. In particular,
with the HW-lock-then-block mechanism, the StaticHeap allocator
generated about 64,000 heap conflicts per 100 million cycles, of
which 72% were caused by simultaneous deallocations by differ-
ent threads. Using DynamicHeap distributed the deallocations
more evenly across heaps, reducing the total number of heap con-
flicts to 34,000, a reduction of 47%. Consequently, DynamicHeap
outperformed StaticHeap by 13% to 34% (excluding the outlier
SW-spin).

Finally, we also evaluated the extent to which static data layout
was a performance issue for the event-based server. We found that
although applying application-level offsetting always helped data

Table 4: Using application-level offsetting to reduce data cache miss rates and improve overall performance.
Original Behavior With Offsetting Throughput

ImprovementServer Configuration L1 Data Miss Rate Throughput L1 Data Miss Rate Throughput
MT StaticHeap, SW-spin-then-block 8.4% 167.6 4.4% 178.8 7%

MT StaticHeap, HW-lock-then-block 8.7% 166.9 4.7% 182.9 10%

MT Dynamic Heap, SW-spin-then-block 9.5% 170.7 5.0% 183.1 7%

MT DynamicHeap, HW-lock-then-block 8.8% 174.1 4.8% 184.3 6%

MP BaseAlloc, SW-block 14.3% 130.9 10.9% 135.4 3%

Figure 3. Server request throughput for the event-
based server, varying the dynamic memory allocation
and synchronization schemes, and without application
offsetting.

0

20

40

60

80

100

120

140

160

180

200

BaseAlloc FirstFit RoundRobin StaticHeap DynamicHeap

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

SW-block SW-spin SW-spin-then-block HW-lock HW-lock-then-block

cache miss rates (on average reducing them from 8.0% to 6.2%),
overall performance varied from +7% to -9%. Offsetting may
affect factors other than cache performance; for instance, it may
increase data TLB misses if the new stacks are not aligned on page
boundaries. Normally these other effects are tempered by the
decrease in cache misses. However, in our implementation of the
event-driven server the threads’ stacks were not allocated in a
deterministic order relative to other memory objects. Accordingly,
the precise layout of the threads’ stacks was non-deterministic, as
it was affected by the precise timing of allocations and the order in
which threads executed during initialization. Consequently, the
original program’s thread stacks did not completely conflict in the
stack. As a result, there was reduced benefit to the offsetting, and
other factors sometimes dominated.

In summary, our event-based server results confirm the general
conclusions we drew from the MT and MP servers: single-heap
allocators introduce too much contention, and synchronization
primitives must eventually yield to the operating system to allow
other threads that have useful work to be done to be scheduled.
While allocation conflicts are an important effect to minimize,
deallocation conflicts can also be a significant performance issue
for applications (such as our event-based server) that pass objects
between threads.

5.5 Sensitivity Analyses
In this section we vary some of the parameters used to config-

ure our dynamic memory allocation mechanisms in order to inves-
tigate the sensitivity of our results to these features. These results
all use the most robust allocator we found in the previous sections,
DynamicHeap, along with the best synchronization strategy, HW-
lock-then-block.

Section 5.1 demonstrated that multiple heap allocators were
necessary to provide enough concurrency for our application. In
the original experiments, the allocators used twice as many heaps
as threads. Figure 4 explores the sensitivity of request throughput
to the heap/thread ratio by varying the total number of heaps used
by the DynamicHeap allocator. We find that throughput steadily
improves as the number of heaps increases, though most of the
performance benefit is achieved when using only eight heaps.
Recall that DynamicHeap's periodic reassignment of heaps to

threads results in allocations and deallocations being distributed
across all heaps. Since we simulate a processor with four contexts,
using four heaps will most likely give rise to inter-thread conflicts
with most allocations and deallocations. Doubling the number of
heaps (to eight) decreases these conflicts and doubles performance,

but the returns diminish with larger numbers of heaps.

Figure 5 shows the performance of the DynamicHeap allocator
as a function of N, the number of allocations before a thread is
assigned to a new heap. For both MT and Event-based, perfor-
mance is fairly constant for a wide range of N from 50 to 6400. For
very small N, it drops for the same reason that the performance of
RoundRobin suffered: each thread keeps the same heap for only a
very short period of time, decreasing data locality. Likewise, as N
grows very large, performance starts to approximate the behavior
of the StaticHeap allocator (the two are equivalent for N = infin-
ity). Request throughput begins to fall, more significantly for the
event-based server. (Results in Figure 3 showed that the fixed heap
assignments of StaticHeap were more of a problem for this type of
server.)

Overall, we find that the performance of the multithreaded and
event-based thread models with DynamicHeap depends upon the
appropriate choice of both the number of heaps and the number of
allocations to delay before changing heaps, but that a very wide
range of choices produces near-ideal performance.

6 PUTTING IT ALL TOGETHER
6.1 Designing SMT-friendly Server Support

Our results have shown that support for threaded server soft-
ware for SMT borrows mechanisms from both uniprocessors and
shared memory multiprocessors, and occasionally requires tech-
niques tailored specifically to its unique hardware capabilities.

Allocation concurrency is the dominant performance factor for
our workload when executing on an SMT, just as it would be on an
SMP. Improving synchronization is fruitless as long as contention
within memory allocation serializes most execution time. A multi-
heap allocator solves this, but must be careful not to destroy the
locality of allocated data. Although SMT is a tremendous latency-
hiding vehicle, our data showed that the large number of intra-
thread misses seen in the RoundRobin allocator could not be easily
absorbed by the thread-shared data TLB and data cache. Instead,
the heap assignment strategy of DynamicHeap is better for SMT,

Figure 4. Results using the DynamicHeap allocator
while varying the total number of heaps. The previous
results assumed that the number of heaps was twice
the number of threads, i.e. 16 heaps for MT, 8 for
Event-based.

0

20

40

60

80

100

120

140

160

180

200

2 4 8 16 32 64

Total Number of Heaps

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

MT Event-based

Figure 5. Results using the DynamicHeap allocator
while varying the number of allocations before a
thread is assigned to a new heap.

0

20

40

60

80

100

120

140

160

180

200

10 50 100 200 400 6400 25600

N -- Number of Allocations before Heap Reassignment

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

MT Event-based

because it distributes both allocations and deallocations across
multiple heaps while still preserving data locality. We found that
such a strategy performed comparably or better than StaticHeap or
RoundRobin for all of our experiments.

Once the allocator-induced contention has been eliminated, the
most relevant factor for SMT server performance shifts to the
design of the synchronization primitive, and specifically, to its
interaction with the operating system’s scheduler. OS intervention
is crucial for both software- and hardware-based locking. On the
software side, blocking to the operating system prevents spinning
threads from stealing SMT hardware resources from those that are
executing useful instructions. On the hardware side, it insures that
hardware-blocked threads do not impede unblocked but desched-
uled threads from running; the operating system can also make bet-
ter thread scheduling decisions than SMT hardware, because it has
global knowledge of which threads can do useful work. In addi-
tion, our HW-lock-then-block synchronization strategy can be
thought of as an application of scheduler activations [4]. HW-lock-
then-block adds an interface between the scheduler that is implicit
in the SMT lockbox and the scheduler in the operating system,
whereas scheduler activations add an interface between the OS and
user-level thread schedulers.

Our work extends earlier results that inter-process stack inter-
ference can be a problem for multi-process workloads to multi-
threaded servers. Stack offsetting is an important optimization for
servers executing on SMT, since the stacks of threads or processes
that are executing concurrently may conflict in the cache, reducing
overall cache performance. The technique can also be useful for
event-based servers, but must be applied more carefully.

Specific memory allocation and synchronization alternatives,
DynamicHeap and HW-lock-then-block, are necessary for the very
best performance on SMT, for both the multithreaded and event-
based thread models. However, there is a wide range of strategies
that will achieve very good performance. SMT hardware designers
and threaded application developers therefore can choose a strat-
egy based on criteria other than high-performing server code (e.g.,
good performance for fine-grain synchronization found in non-
server workloads).

Our results also have interesting implications for a server con-
structed of multiple SMT processors within a single system. This
“SMP of SMTs” presents a new set of challenges that requires fur-
ther research. We speculate, however, that such a system should
use synchronization and static memory allocation strategies that
work well for a SMT processor (e.g. HW-lock-then-block and
stack offsetting), since these do no harm on a multiprocessor sys-
tem. As noted previously, however, the DynamicHeap allocator is
poorly suited for a SMP. In this case the choice of the ideal alloca-
tor is more complex, favoring SMP-centric allocators where the
number of processors is large, a SMT-centric allocator where pro-
ducer-consumer behavior is significant, or perhaps a hybrid combi-
nation of the two approaches.

6.2 Run-time Support
Although most of our techniques could be implemented within

applications, we believe that a better place to implement these
improved mechanisms is in application-level run-time support
software (such as libC, or the pthreads library). This strategy
encourages portability across architectures and operating systems,
prevents authors from having to tune their software to specific

architectural details, and encapsulates these mechanisms in one
software layer, making it possible to tune the mechanisms to affect
all applications that use them.

It is common for the same server application code to run on
both uniprocessors and SMPs; this code could also be used on
SMTs. Providing SMT-appropriate run-time support ensures good
performance even if an application was not specifically tuned for
SMT. But even for SMT-targeted applications, the application
writer may not know important run-time details, such as the num-
ber of contexts that will be allocated to an application. SMT-aware
run-time support can learn this information from the operating sys-
tem and adjust accordingly, for example, alter the number of heaps
used for memory allocation, offset thread stacks to avoid cache
conflicts, or change the synchronization scheme (e.g., to never
block to the operating system if it detects that the total number of
threads is less than or equal to the total number of contexts).
Finally, including appropriate memory allocation and synchroniza-
tion strategies in the run-time system saves programmers from
having to reinvent the wheel for each application. Programmers
may still provide their own mechanisms where appropriate, but
providing reliable primitives for the common case makes good
design sense.

7 RELATED WORK
Prior research on multithreaded processors has considered

mainly multiprogrammed [43, 15, 40] or scientific workloads [15,
30, 25] such as the SPLASH-2 benchmarks [47], rather than server
applications. Evaluation of server applications, however, is partic-
ularly important, because several studies [5, 13, 39] have found
that the performance of servers is often far worse than that of typi-
cal SPEC integer and floating point applications on both unipro-
cessors and SMT processors. A few studies [29, 39] have
considered database and web server applications and found that
SMT can provide significant speedups compared to a uniprocessor.
These studies, however, only considered multi-process workloads,
where the memory allocation and synchronization issues that we
consider are much more straight-forward than for multithreaded
applications.

Lo et al. [31] reconsiders several compiler optimizations
designed for shared memory multiprocessors and suggests ways
that they should be applied differently on an SMT processor. Our
work on SMT also reevaluates some techniques drawn from SMPs,
but focuses on techniques that can be implemented in the runtime
system with no changes to the application or compiler. In addition,
a small body of research has considered improvements to the oper-
ating system for SMT processors. For instance, Snavely and
Tullsen [40] propose using sampling to determine mixes of threads
that execute well together, while Redstone [38] investigates the
performance impact of eliminating spinning synchronization from
within the operating system. These techniques would complement
our work on improving runtime support for multithreaded and
multi-process applications.

For dynamic memory allocation on multithreaded processors,
we are aware only of the superthreaded work of Tsai et al. [41];
they use (but do not evaluate) multiple heaps to reduce allocator
contention on a SMT-like machine. A large body of previous work,
however, has considered this problem for shared memory multi-
processors. Most work has focused on reducing allocator conten-
tion by parallelizing a single heap [9, 19], generally by using

multiple free lists (similar to our baseline allocator provided by
Compaq). Our results confirmed that these approaches often fail to
scale well, because many programs allocate objects from only a
few different object sizes [21]. Alternatively, researchers have con-
sidered reducing contention with multiple heaps [26, 6, 45]. While
using multiple heaps reduces lock contention, sharing and locality
effects among these heaps can have a serious effect on perfor-
mance, issues addressed by LKmalloc [26] and Hoard [6]. The
StaticHeap that we considered in this work has very similar behav-
ior to the best SMP allocator we found, Hoard. However, Hoard
also uses a global heap to redistribute memory among per-thread
heaps when necessary, an important feature for a complete imple-
mentation of any of the multiple-heap allocators that we consider.

Haggander and Lundberg [17] recommend using a multi-pro-
cess architecture where possible to avoid the possible pitfalls of
multithreaded memory allocation. Our work demonstrates that this
option is indeed simpler for workloads where little interaction is
needed between different requests, but suffers a performance pen-
alty. Alternatively, many applications (e.g., Apache and several
SPEC benchmarks, see [8]) attempt to improve multithreaded
memory allocation by the use of application-specific memory allo-
cators. Recent research proposes the use of heap layers to make
such allocators more reusable and maintainable [7].

Our evaluation of dynamic memory allocation differs from
previous work in several ways. First, we present the first experi-
mental results of which we are aware that demonstrate the perfor-
mance impact of memory allocation for a multithreaded processor.
Second, we examined how the memory allocator interacts with the
unique features of an SMT processor, particularly the shared TLB
and data caches. Finally, we demonstrated how a few simple
changes to existing allocators based on these features could pro-
duce significant performance improvements, eliminating the worst
case behavior of the best known SMP allocator (Hoard) for the
common producer-consumer software pattern.

Our evaluation of the layout of statically allocated data
extends the earlier work by Lo et al. [29] to multithreaded applica-
tions. Kerly [24] also notes the possibility of multithreaded stack
interference on an Intel hyperthreaded processor and suggests sim-
ilar techniques for reducing the conflicts. Kerly, however, consid-
ers this problem to be temporary and expects hardware features to
address it in the future; we argued instead that the runtime system
is well-suited for tackling the problem, and measured the potential
impact of this interference for three different types of software
architectures.

Section 2.4 discussed the previous research that exists for
SMPs and, to some extent, SMT processors, regarding synchroni-
zation. Because earlier work either did not fully simulate the oper-
ating system [29, 11] or used only as many threads as contexts
[44], previous SMT synchronization research focused upon elimi-
nating spinning rather than communicating with the operating sys-
tem. We demonstrate that operating system interaction is likely to
be paramount, particularly for server applications, which typically
have an abundance of independent threads. Our work extends the
classical spin-then-block software algorithms investigated by
Boguslavsky et al. [10] and Karlin et al. [23] to a hardware wait-
then-block technique best suited for SMT.

Intel [14] also discusses the need for threads on a multi-
threaded processor to block to the operating system, but they pro-
vide no way to combine this with efficient hardware locks. Other

relevant work includes speculative lock elision [37], which
improves performance by dynamically eliminating the need for
many synchronization operations rather than by improving syn-
chronization.

8 CONCLUSION
In this paper, we examined how dynamic memory allocation,

stack allocation and synchronization techniques affect the perfor-
mance of multithreaded server software on SMT processors.
Although significant previous work exists in these areas, we found
that a re-examination was necessary, because SMT changes key
hardware features found on both uniprocessors and multiproces-
sors. Consequently, optimizing multithreaded software perfor-
mance on SMTs required borrowing some techniques from
uniprocessors, borrowing others from multiprocessors, and invent-
ing new SMT-specific strategies.

For our workload, we found that eliminating contention in the
memory allocator was the most important optimization. With this
in place, several second-order optimizations were possible, includ-
ing: picking a synchronization strategy that could communicate
with the OS scheduler, optimizing the layout of allocated objects to
be locality aware, and eliminating allocator contention during deal-
locations. Overall, our techniques were able to increase the perfor-
mance of a naive multithreaded implementation dramatically. We
argued that most of these benefits could be realized by implement-
ing the optimizations within the run-time support libraries. Doing
so would increase the portability of applications, as programmers
would not need to embed architecture-specific optimizations in
their applications.

9 REFERENCES
[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April:

A processor architecture for multiprocessing. In 17th Annual
International Symposium on Computer Architecture, June
1990.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer system. In
International Conference on Supercomputing, June 1990.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data and
computation transformations for multiprocessors. In
Symposium on Principals & Practice of Parallel
Programming, July 1995.

[4] T. Anderson, B. Bershad, E. Lazowska, and H. Levy.
Scheduler Activations: Effective Kernel Support for the User-
Level Management of Parallelism. ACM Transactions on
Computer Systems, 10(1), February 1992.

[5] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In 25nd
Annual International Symposium on Computer Architecture,
July 1998.

[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, November 2000.

[7] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing
high-performance memory allocators. In Conference on
Programming Language Design and Implementation, June
2001.

[8] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In Conference on Object-
Oriented Programming: Systems, Languages, and
Applications, November 2002.

[9] B. Bigler, S. Allan, and R. Oldehoeft. Parallel dynamic
storage allocation. In International Conference on Parallel
Processing, 1985.

[10] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, and
A. Vainshtein. Optimal strategies for spinning and blocking.
Technical report, CSRI-278, Computer System Research
Institute, University of Toronto, January 1993.

[11] J. Bradford and S. Abraham. Efficient synchronization for
multithreaded processors. In Workshop on Multithreaded
Execution Architecture and Compilation, January 1998.

[12] Compaq Computer Corporation. malloc(3) man page,
Standard C library for Tru64 UNIX.

[13] Z. Cvetanovic and R. Kessler. Performance analysis of the
Alpha 21264-based Compaq ES40 System. In 27th
International Symposium on Computer Architecture, June
2000.

[14] Intel Developer. Introduction to next generation
multiprocessing: Hyper-threading technology. http://
developer.intel.com/technology/hyperthread/intro_nexgen/,
August 2001.

[15] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen.
Simultaneous multithreading: A platform for next-generation
processors. IEEE Micro, 17(5), August 1997.

[16] S. Eggers and R. Katz. The effect of sharing on the cache and
bus performance of parallel programs. In 3rd International
Conference on Architectural Support for Programming
Languages and Operating Systems, April 1989.

[17] D. Haggander and L. Lundberg. Attacking the dynamic
memory problem for SMPs. In 13th International Conference
on Parallel and Distributed Computing System, 2000.

[18] htdig. WWW search engine software. www.htdig.org.
[19] A. Iyengar. Parallel dynamic storage allocation algorithms. In

Fifth IEEE Symposium on Parallel and Distributed
Processing, 1993.

[20] T. Jeremiassen and S. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In Symposium on Principals & Practice of
Parallel Programming, July 1995.

[21] M. S. Johnstone and P. R. Wilson. The memory fragmentation
problem: Solved?. In ISSM, Vancouver, B.C., Canada, 1998.

[22] A. Kagi, D. Burger, and J. R. Goodman. Efficient
synchronization: Let them eat QOLB. In 24nd International
Symposium on Computer Architecture, June 1997.

[23] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical
studies of competitive spinning for a shared-memory
multiprocessor. In Proceedings of the 13th ACM Symposium
on Operating Systems Principle, 1991.

[24] P. Kerly. Adjusting thread stack address to improve
performance on intel xeon processors. Intel Developer
Services. http://cedar.intel.com/cgi-bin/ids.dll/
topic.jsp?catCode=CYU, February 2002.

[25] H. Kwak, B. Lee, A. R. Hurson, S.-H. Yoon, and W.-J. Hahn.
Effects of multithreading on cache performance. IEEE
Transactions on Computers, 48(2), 1999.

[26] P.-. Larson and M. Krishnan. Memory allocation for long-
running server applications. In International Symposium on
Memory Management, 1998.

[27] J. R. Larus and M. Parkes. Using cohort-scheduling to
enhance server performance. In USENIX Annual Technical
Conference, 2002.

[28] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/
html/malloc.html.

[29] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, J. Levy, and
S. Parekh. An analysis of database workload performance on
simultaneous multithreading processors. In 25nd Annual
International Symposium on Computer Architecture, June
1998.

[30] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen.
Converting thread-level parallelism into instruction-level
parallelism via simultaneous multithreading. ACM
Transactions on Computer Systems, 15(2), August 1997.

[31] J. Lo, S. Eggers, H. Levy, S. Parekh, and D. Tullsen. Tuning
compiler optimizations for simultaneous multithreading. In
30th Annual International Symposium on Microarchitecture,
December 1997.

[32] L. McDowell. Exploring the performance potential of a
staged software architecture on simultaneous multithreaded
processors. In Qualifying Examination Report, University of
Washington, July 2001.

[33] S. McFarling. Combining branch predictors. Technical report,
TN-36, DEC-WRL, June 1993.

[34] S. Microsystems. A comparison of memory allocators in
multiprocessors. http://soldc.sun.com/articles/multiproc/
multiproc.html.

[35] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. In USENIX 1999 Annual
Technical Conference, 1999.

[36] R. Preston et al. Design of an 8-wide superscalar risc
microprocessor with simultaneous multithreading. In
International Solid-State Circuits Conference, February 2002.

[37] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In 34th
International Symposium on Microarchitecture, December
2001.

[38] J. Redstone. An Analysis of Software Interface Issues for SMT
Processors. Ph.D. thesis, University of Washington,
December 2002.

[39] J. Redstone, S. Eggers, and H. Levy. Analysis of operating
system behavior on a simultaneous multithreaded
architecture. In 9th International Conference on Architectural
Support for Programming Languages and Operating Systems,
November 2000.

[40] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In 4th International
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[41] J.-Y. Tsai, Z. Jiang, E. Ness, and P.-C. Yew. Performance
study of a concurrent multithreaded processor. In Fourth
International Symposium on High Performance Computer
Architecture, February 1998.

[42] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor. In
23nd Annual International Symposium on Computer
Architecture, May 1996.

[43] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd
Annual International Symposium on Computer Architecture,
June 1995.

[44] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting fine-
grain synchronization on a simultaneous multithreaded
processor. In Fifth International Conference on High-
Performance Computer Architecture, January 1999.

[45] V.-Y. Vee and W.-J. Hsu. A scalable and efficient storage
allocator on shared-memory multiprocessors. Parallel
Processing Letters, 11(2/3), 2001.

[46] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
architecture for well-conditioned, scalable internet services.
In Symposium on Operating Systems Principles, 2001.

[47] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In 22nd Annual International Symposium on
Computer Architecture, June 1995.

