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ABSTRACT
It is now common for Web sites to use active Web content, such
as Flash, Silverlight, or Java applets, to support rich, interactive
applications. For many mobile devices, however, supporting active
content is problematic. First, the physical resource requirements
of the browser plug-ins that execute active content may exceed the
capabilities of the device. Second, plug-ins are simply not available
for many devices. Finally, active code and the plug-ins that execute
it often contain security flaws, potentially exposing a user’s device
or private data to harm.

This paper explores a proxy-based approach for transparently
supporting active Web content on mobile devices. Our approach
uses a proxy to splice active content out of Web pages and replace
it with an AJAX-based remote display component. The spliced ac-
tive content executes within a remote sandbox on the proxy, but it
appears embedded in the Web page on the mobile device’s browser.

To demonstrate the viability of this approach, we have designed,
implemented, and evaluated Flashproxy. By using Flashproxy, any
mobile Web browser that supports JavaScript transparently inher-
its the ability to access sites that contain Flash programs. The
major challenge in Flashproxy is in trapping and handling inter-
actions between the Flash program and its execution environment,
including browser interactions. Flashproxy uses binary rewriting of
Flash bytecode to interpose on such interactions, redirecting them
through a JavaScript-based RPC layer to the user’s browser. Our
evaluation of Flashproxy shows that it is transparent, performant,
and compatible with nearly all Flash programs that we examined.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; H.3.5 [Online
Information Systems]: Web-based services
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1. INTRODUCTION
Today’s Web sites often use active content such as Flash, Java, or

Silverlight to provide their users with rich, interactive applications.
In many environments, including mobile device Web browsing,
browser support for active content is problematic. Active content
types require complex plug-ins to run, yet on many device classes
these plug-ins are not yet available. Even when they are avail-
able, installing and running browser plug-ins can be undesirable,
as they create security vulnerabilities, require significant compute
and memory resources, and create administrative burden on users
to keep them patched and up to date.

As a concrete example, recent mobile devices such as Windows
Mobile PDAs and the Apple iPhone contain feature rich browsers.
However, Windows Mobile devices only support Flash Lite, a trim-
med down version of Flash, and the iPhone does not yet have any
Flash support. Flash has also had its share of security flaws, in-
cluding critical vulnerabilities that can be exploited by remote Web
sites [26] or that make the browser susceptible to denial of service
attacks [25].

This paper demonstrates that it is possible for a mobile-device-
based browser to access Web sites that contain active content, even
if the browser does not have built-in support for it. Our approach
relies on a proxy to intercept and modify the Web page, splicing out
any active content it finds and replacing it with an AJAX-based [12]
remote display Web component. The active content executes within
a secure sandbox on the proxy, but it is remotely displayed in the
correct location within the mobile browser’s Web page.

This approach has many benefits. First, it is transparent; any
Web browser that supports JavaScript and that has sufficient band-
width to the proxy gains support for the active content, without
requiring any new software on the device. Second, it is more se-
cure; vulnerabilities in the plug-ins that support the active content
are isolated from the user, her browser, and her device. Third, it is
more manageable; if any software updates or security patches need
to be applied to the plug-in, they can be done at the proxy without
involving users.

To investigate the viability of our approach, we designed, im-
plemented, and evaluated Flashproxy, a system that provides sup-
port for Flash content in JavaScript-enabled browsers. Flashproxy
was architected to be extensible to additional content types, includ-
ing Silverlight and Java. However, we implemented Flash support
first, since it is far more common in today’s Web. With Flashproxy,
a Web browser no longer needs a Flash plug-in; instead, Flash-
proxy splices out the Flash content, replacing it with only 10KB of
JavaScript code.

Flashproxy posed many challenges, primary of which is cor-
rectly handling interactions between the Flash program and its exe-
cution environment. A Flash program can communicate with a re-



mote Web server, trigger the download of an object into the user’s
file system, cause the browser to navigate to a new page, or directly
invoke JavaScript functions defined within its enclosing page. To
preserve the functionality of the Web page, Flashproxy must inter-
cept these interactions on the remote proxy and either handle them
directly or forward them to the user’s browser. Our implementa-
tion relies on binary rewriting of Flash bytecode to interpose on
the execution of the Flash program, and an RPC layer implemented
in JavaScript to forward relevant function invocations between the
remotely executing Flash program and the mobile device’s browser.

We evaluated Flashproxy using microbenchmarks, manual ex-
amination of real Flash applications, and automated analysis of
Flash programs found using a Web crawler. Our evaluation shows
that nearly all Flash programs execute correctly through Flashproxy,
including on mobile devices such as the iPod Touch. Though we
have not yet tried to optimize the performance of the remote display
or RPC components of Flashproxy, we found it performs well for
many commonly encountered Flash application classes, including
Flash-based navigation structures, advertisements, and YouTube-
style embedded Flash movies. Overall, our experience demon-
strates the viability of using the Flashproxy architecture for exe-
cuting active content on behalf of mobile devices.

2. AN OVERVIEW OF FLASH
To provide context for the rest of this paper, this section gives a

brief technical overview of Flash. We discuss the structure of Flash
applications, their common uses, and their execution environment.

A Flash application, colloquially referred to as a “Flash movie,”
is a program that contains a blend of vector and raster graphics, au-
dio and video components, and bytecode that is typically compiled
from a scripting language called ActionScript. In the context of the
Web, Flash programs are active objects that are embedded within
Web pages, similar to Java applets or Silverlight applications. Flash
has gained widespread adoption in recent years, and it is being used
to add many kinds of interactive content to Web pages.

Flash programs are developed using integrated development en-
vironments (IDEs) that are geared more towards supporting Web
and multimedia development than traditional software engineering
tasks. An IDE compiles a Flash program into a .swf-formatted
file that contains the media objects, user interface elements, and
bytecode used by the program. A Flash virtual machine parses and
executes the .swf file; Web browsers rely on “Flash Player” plug-
ins to implement this virtual machine.

In addition to the basic virtual machine architecture, a Flash
Player also defines built-in classes that Flash bytecode, and there-
fore ActionScript programs, can invoke. These built-in classes
(named flash.*) play a similar role to Java’s class library. Some
flash.* classes facilitate the manipulation of graphics, user inter-
face elements, and events. Others allow bytecode to take advantage
of underlying operating system functions, including raw network,
file, and HTTP operations. As well, the flash.* classes allow a
Flash program to interact with JavaScript functions defined by the
Web page in which it is embedded, or to ask the browser to navi-
gate to a new Web page. Figure 1 shows a high-level architectural
view of a Flash program running within a browser.

Flash and ActionScript have evolved over time. In this paper, we
focus only on Flash versions 1–8, associated with the ActionScript
language version 2 or below. Adobe recently released a redesigned
Flash virtual machine, called AVM2, along with ActionScript 3.0
and Flash Player 9. From our preliminary investigation, the ab-
stractions and mechanisms we have designed in Flashproxy should
be applicable to AVM2 programs, though to handle them we would
need to implement a new bytecode parser and binary rewriter. For-
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(virtual machine,  flash.* class library)

browser OSwindowing
system

JavaScript,
Web page
operations

network, files,
time, printing,
memory alloc.

graphics, sound,
text, key events,
mouse events

Figure 1: Flash architecture. A Flash program is contained within
a .swf file, and is executed by a virtual machine implemented by the
Flash Player browser plug-in. The Flash Player also defines a set of
classes that allow the Flash program to interact with the host OS, its
windowing system, and the Web page and browser in which the Flash
program runs.

tunately, our evaluation in Section 5 shows that the vast majority of
Flash programs on the Web are not AVM2-based.

2.1 Flash bytecode
Flash bytecode consists of a sequence of instructions; an instruc-

tion is commonly referred to as an “action.” The Flash specification
defines what instructions are understood by the Flash virtual ma-
chine and the opcodes into which the instructions are encoded. The
Flash virtual machine is stack-oriented; an instruction can specify
some arguments directly in its encoding, but it will more gener-
ally pop its arguments from the stack and push a result back onto
it. The Flash virtual machine also has a simple notion of a pro-
gram counter (PC). The value of the PC is defined to be the address
of the instruction that follows the instruction currently being exe-
cuted. The instruction address space is byte oriented, but encoded
instructions may require several bytes. The Flash verifier and vir-
tual machine only permit programs to transfer control to addresses
associated with the beginning of an instruction opcode.

Flash defines instructions for arithmetic, logic, string manipu-
lation, variable manipulation, control flow, type conversion, and
exception handling. More recent versions of Flash include object-
oriented instructions, including operators for class and method def-
inition, lookup, and invocation. Flash also has a number of higher-
level, CISC-like instructions, including ones that manipulate the
timeline of a Flash program or retrieve media objects over HTTP.
Many of these high-level instructions have become deprecated in
favor of functionally equivalent flash.* classes and methods im-
plemented by the Flash Player.

As we will describe, Flashproxy relies on binary rewriting to
interpose on certain functions that a Flash program might invoke.
Flash provides two basic mechanisms for function invocation. First,
a program can issue one of the CISC-like instructions that the vir-
tual machine defines; for example, the ActionGetURL2 instruction
lets a program retrieve Web data into a local variable or command
the Web browser to navigate to a new page. Second, a program
can invoke a function or method; some functions and methods are
defined by the flash.* classes, while others can be defined by
the program itself. To call a function or method, a program pushes
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Figure 2: High-level Flashproxy architecture. (a) A browser directly
fetching a Web page with an embedded Flash program. (b) A browser
using Flashproxy to fetch the same Web page; Flashproxy rewrites the
Web page, replacing the Flash program with a remote display AJAX
component. The Flash program executes within a “doppelbrowser” – a
full Web browser and Flash Player executing in Flashproxy.

onto the stack either the String name of the callee or a reference
to the callee, as well as any arguments, and then invokes either the
ActionCallFunction or ActionCallMethod instruction. The
virtual machine will pop the appropriate values off the stack and
transfer control to the callee.

3. ARCHITECTURE
In Figure 2, we present a high-level, conceptual illustration of the

Flashproxy architecture. To use Flashproxy, a user simply config-
ures her browser to proxy all HTTP requests through Flashproxy;
no software needs to be installed on the client.

If Flashproxy detects that an embedded Flash program exists on
a requested Web page, it rewrites the Web page to splice out the
embedded program, replacing it instead with our AJAX-based re-
mote display Web component. This component relays user input to
Flashproxy and downloads its graphical display from Flashproxy.

On the proxy-side, Flashproxy passes the spliced-out Flash pro-
gram through a binary rewriting component to insert interposition
hooks on functions of interest. The rewritten Flash program is then
embedded inside a minimal Web page and rendered by a doppel-
browser – a fully-functioning Web browser executing within Flash-
proxy. A remote display server on Flashproxy relays the input and
output of the Flash program to the AJAX component on the client’s
browser. If a Web page contains multiple Flash programs, Flash-
Proxy will run multiple doppelbrowser instances, one per program.

Figure 2 is deliberately simplified; it elides additional compo-
nents that are necessary to make Flashproxy work. To keep Flash-
proxy transparent, interactions between Flash programs and their
execution environment must be interposed upon and relayed to the
user’s Web browser if necessary. In the rest of this section, we
identify the resulting complications and describe the architectural
components we constructed to handle them.

3.1 Interactions between Flash and remote
hosts

Flash code can interact with remote hosts, either by download-
ing data over HTTP or by opening raw network sockets to remote
ports. As a security measure, the Flash player enforces a same ori-
gin policy on remote communications. As a default, this policy
prevents a Flash program from communicating with any host other
than the one from which it was downloaded. Therefore, to preserve
the ability for Flash to communicate, Flashproxy must make the
doppelbrowser believe that the Web page and rewritten Flash pro-
gram it is executing were downloaded from the true origin Web site.
As well, Flashproxy must preserve the pathname of the embedded
program, so that any relative URLs generated by it cause the dop-
pelbrowser or Flash Player to issue HTTP requests with correct
absolute pathnames.

To accomplish this, we enhanced the Web proxy to look for two
specific URLs: that of the Web page embedding the Flash object,
and that of the Flash object itself. If the Web proxy sees either of
these URLs coming from the doppelbrowser, it redirects them to an
internal Web server we run on Flashproxy. All other network con-
nections (HTTP or raw sockets) emanating from the doppelbrowser
are permitted to pass unmodified; we rely on the doppelbrowser to
enforce the same origin policy over the rewritten Flash program,
and assume that such communication is safe. When the doppel-
browser is initially launched, Flashproxy directs it to load the em-
bedding Web page; we seed the internal Web browser with a simple
page containing only the rewritten Flash object.

Flash Player provides classes that allow a program to dynami-
cally load additional Flash code over HTTP and execute it as part
of the same program. Our Web proxy looks for any such dynamic
load requests coming from the doppelbrowser, and uses the same
mechanisms as described above to rewrite this new code and serve
it from the internal Web server.

3.2 Interactions between Flash and
JavaScript

Some Flash Player classes let a Flash program invoke JavaScript
functions defined on the Web page in which the Flash program is
embedded (Figure 3a). When invoked, the Flash virtual machine
transfers the logical thread of execution to the JavaScript interpreter
running in the Web browser, and resumes once the function has
finished. Because the JavaScript functions can have side-effects
visible to the user, and because the functions might depend on
state only present on the user’s browser, we cannot execute these
JavaScript functions on the doppelbrowser. Instead, we must exe-
cute them on the user’s browser, transferring any arguments and
return value between the calling Flash program and the remote
JavaScript function.

To do this, we implemented a JavaScript RPC layer, as shown in
Figure 3b. The binary rewriter modifies any ExternalInterface
calls in the Flash program to invoke a stub function in our doppel-
browser’s Web page. The stub function marshals the function name
to be invoked and its arguments into a string, and uses XMLRPC
to pass this string to an RPC nexus process running in FlashProxy.

FlashProxy inserts a corresponding skeleton JavaScript function
into the user’s Web page before transferring it to the user’s browser.
This skeleton function uses XMLRPC to pull new RPC invocations
from the RPC nexus. After receiving a new invocation, the skeleton
unmarshals it and invokes the appropriate JavaScript function. The
return path to the Flash program in the doppelbrowser proceeds
similarly.

The RPC nexus is needed as JavaScript cannot receive incoming
network connections, but only call out to remote Web servers. The
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javascript Flash program a.swf '
function stub(f, args[]) {
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           str);
  return unmarshal(res);
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   "stub", ["foo", 1, 2]
);

doppelbrowser

RPC nexus

XMLRPCs

user's browser

javascript
function skel() {
   next = XMLRPC(rpc_nexus);
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   res = f(args);
   str = marshal(res);
   http_get(rpc_nexus, str);
}

function foo(a,b) {
   return a*b;
}
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Figure 3: JavaScript invocation. (a) A Flash program can use Ex-
ternalInterface to call JavaScript functions. (b) FlashProxy rewrites
Flash programs to call instead a stub JavaScript function on the dop-
pelganger web page. This stub marshals the request and relays it
through an “RPC nexus” process to a corresponding skeleton function
that FlashProxy inserted on the user’s Web page. The skeleton invokes
the appropriate JavaScript function.

nexus therefore acts as an intermediary that connects the JavaScript
stub and skeleton together. Though this design adds extra overhead,
our evaluation shows that ExternalInterface calls are rare, and
hence the overhead will not affect the common case performance
of a Flash program. Using the nexus allows us to implement the
JavaScript RPC layer on the user’s browser without requiring that
the user install any new software; the skeleton is simply JavaScript
code inserted by the proxy.

The ExternalInterface class also allows Flash programs to
register functions that JavaScript running in a browser can invoke.
The mechanism we use to handle this is similar to that described
above, but it proceeds in the opposite direction. A stub function
on the user’s browser marshals requests and relays them through
the RPC nexus to a JavaScript skeleton on the doppelbrowser. This
skeleton invokes the function within the Flash player. The only ad-
ditional complication is that the function registration event gener-
ated by the Flash program needs to be relayed to the user’s browser,
so that an appropriate stub function can be created there. We inter-
pose on Flash ExternalInterface registration events using bi-
nary rewriting, and use the JavaScript RPC layer to pass this event
to skeletons running on the user’s browser.

3.3 Interactions between Flash and the
browser

Several Flash instructions and classes, including fscommand,
getURL, getURL2, and movieclip.getURL, allow a Flash pro-
gram to interact with the browser. For example, fscommand can be
used to change the Flash program to full-screen mode, and getURL
can cause the browser to open a specified URL in a new page.

Our binary rewriter identifies these calls, and translates them into
ExternalInterface calls to a JavaScript stub function on the
doppelbrowser Web page. From there, the calls are marshaled and
relayed to the user’s browser using the same RPC layer described
above. The proxy inserts a skeleton JavaScript function into the
user’s Web page that unmarshals these calls and causes the appro-
priate browser side-effect to happen.

Flash also provides flash.net.LocalConnection, a class that
allows two Flash programs embedded within the same page to di-
rectly communicate with each other. We have not yet implemented
support for this class, but doing so should be a simple matter of
using our binary rewriter to redirect these calls to JavaScript stubs
on the respective browsers, and to use the JavaScript RPC layer to
relay data between the stubs.

3.4 Detecting embedded Flash content
Determining if a Web page contains a Flash program is sur-

prisingly intricate. The simplest way to embed Flash is to use
<embed> HTML tag with the appropriate type, height, width, and
src attributes. If a page uses this method, our Web proxy can detect
and splice out these embed tags, replacing them with our AJAX el-
ement instead. At that time, the proxy also downloads the referred
Flash script and passes it to the rewriter.

The <embed> tag is not endorsed by the W3C; instead, they
mandate the use of the <object> element. Unfortunately, Mi-
crosoft’s IE browser interprets <object> elements slightly differ-
ently than most other browsers, leading Web sites that use this tag
to actually embed two nested versions of it, one for IE and one for
other browsers. Consequently, scanning HTML to look for Flash
elements embedded with this tag is tricky.

To make matters worse, many Web sites use JavaScript to test
whether the client’s browser supports Flash; if so, it is common
for the JavaScript code to dynamically rewrite the HTML (using
document.write() or innerHTML={...}) to inject <embed>

or <object> tags into the page. A popular script package called
SWFObject encapsulates all of this complexity.

It is not possible for the Web proxy to detect Flash on pages that
use these dynamic techniques, since the HTML that ultimately em-
beds the object is generated as a side-effect of running client-side
JavaScript. Instead, we use the proxy to inject our own JavaScript-
based detection code into all transferred pages. Our code periodi-
cally inspects the DOM of the page to look for embedded objects
associated with Flash. If one is found, our code replaces the ob-
ject with an AJAX remote display widget and uses the JavaScript
RPC layer to notify Flashproxy, which then downloads, rewrites,
and executes the Flash program within a doppelbrowser.

As a final intricacy, scripts such as SWFObject probe the list of
installed browser plug-ins to test for Flash support. Our injected
JavaScript code fools these scripts into believing that a Flash plug-
in exists, causing the <embed> or <object> tag to be inserted
and the rest of the page to believe the Flash program is running.

3.5 Summary
This section presented a simplified FlashProxy architecture, and

then described a set of additional components and interfaces that
we required to interpose upon and transparently handle interactions
between a Flash program and its execution environment. Figure 4
illustrates the resulting architecture. Through a combination of bi-
nary rewriting to interpose on Flash functions, JavaScript stubs and
skeletons inserted on the user’s and doppelbrowser’s Web page, and
an RPC nexus to intermediate between them, we were able to catch
and redirect these interactions in a way that is transparent to the
user’s device and the origin Web server.
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Figure 4: Detailed Flashproxy architecture. This diagram illustrates
the additional components we needed to add to Flashproxy to handle
a Flash program’s external interactions in a way that is transparent to
both the user’s browser and the origin Web server.

4. IMPLEMENTATION
In this section of the paper, we provide additional implemen-

tation details of three FlashProxy components: the Flash binary
rewriter, the JavaScript-based RPC layer, and the AJAX-based re-
mote display Web widget. As well, we provide some details about
the JavaScript code that Flashproxy injects into the user’s browser.

4.1 Binary rewriter
The binary rewriter component must inspect and modify the byte-

code embedded in a Flash program, and then update the .swf file
parameters and headers to account for any changes, including the
length of bytecode stored within it. Instead of implementing our
own bytecode parser, we used an open-source tool called Flasm [14]
to disassemble the bytecode in a Flash program into a textual rep-
resentation. The binary rewriter operates on this textual representa-
tion and then uses Flasm’s assembler to update the bytecode within
the .swf file.

The rewriter searches for specific bytecode instructions and re-
places them with an alternate sequence of instructions. For ex-
ample, an ActionGetURL instruction can take a URL embedded
directly in its opcode and redirect the client’s Web browser to this
URL. We rewrite this instruction so that the program instead per-
forms an ExternalInterface call to pass the URL to the RPC
layer in the doppelbrowser. The RPC layer forwards this URL to
the RPC nexus, which relays it to the RPC layer in the client’s
browser. To replace ActionGetURL with this ExternalInter-
face call, the rewriter must inject several new instructions that
manipulate the execution stack to properly construct arguments for
the ExternalInterface call and then invoke the call using an
ActionCallMethod instruction.

As another example, we rewrite all instructions that invoke a
function call, specifically ActionCallFunction and Action-

CallMethod. We change them to first check their call tar-
gets against a list of functions we need to interpose on, such
as ExternalInterface.call or ExternalInterface.add-

Callback. Doing this at the bytecode level is intricate; we must
insert instructions that load the address of each function we want
to test against into the stack and to compare them to the actual call
target. If there is a match, we take a conditional branch to code

that makes an ExternalInterface call to the doppelbrowser’s
RPC layer, passing the original function’s arguments as well as the
matched function’s name as an extra argument. If there is no match,
we invoke the original call, being careful to preserve its original ar-
guments on the stack. To compare functions, we use pointers to
functions rather than names to account for cases where a user cre-
ates custom variables pointing to functions.

Calling a function from Flash’s class library involves several
lookups. For example, the ExternalInterface.addCallback

function is located in the flash.external package. To call it,
the code must first load the flash class, then look up three of its
members in turn to get a function pointer. We need to perform these
lookups to load each function that we must interpose on, for every
call instruction we encounter. As an optimization, we avoid repeat-
ing these lookups by caching their results in global variables, which
we then use for subsequent comparisons.

4.2 JavaScript-based RPC layer
Flashproxy’s RPC layer is responsible for providing a bi-

directional communication channel between the client’s browser
and the doppelbrowser. Its implementation relies on JavaScript
code injected into both the client’s browser and the doppelbrowser.
Because we must use JavaScript, we are limited by its restrictions.
For example, JavaScript cannot accept an incoming network con-
nection, and any outgoing HTTP requests must adhere to the same-
origin policy. Fortunately, JavaScript has an XmlHttpRequest

function, which can be used to make HTTP requests either syn-
chronously or asynchronously. This function forms the basis for
our RPC layer implementation.

Because JavaScript cannot accept an incoming network connec-
tion, the client’s browser and the doppelbrowser cannot connect to
each other directly. Instead, they communicate by connecting to
the RPC nexus and relaying information through it. If the doppel-
browser wants to make an RPC call to the client’s browser, it sends
its request to the RPC nexus using JavaScript’s XmlHttpRequest
function in a synchronous mode. This will suspend any JavaScript
execution on the doppelbrowser until it receives the return value for
the request, which matches the synchronous semantics of a function
call in Flash.

The RPC nexus receives this request and must forward it to the
client’s browser. However, it cannot directly connect to it; instead,
the client periodically polls the RPC nexus for updates using asyn-
chronous XmlHttpRequests. The RPC nexus can then deliver
the doppelbrowser’s request as a reply to one of these XmlHttp-

Requests.
This polling approach introduces a potentially large latency for

delivering RPC calls, but we were able to optimize this away. When
the client’s browser asks the RPC nexus for an update, the RPC
nexus delays its response until it has an RPC call to send. JavaScript
imposes a 10-second timeout on asynchronous XmlHttpRequests,
however, meaning the client’s requests cannot be delayed by more
than 10 seconds. To deal with the timeout, the client initiates a
new request to the RPC nexus every 5 seconds, but the RPC nexus
delays the response to the latest poll request only, canceling any
previous outstanding requests before they cause a timeout on the
client.

When the client finishes processing an incoming RPC call, it
must pass a return value back to the doppelbrowser. To do this, it
makes an XmlHttpRequest to the RPC nexus, which then wakes
up the doppelbrowser’s connection and sends it the return value.
Our RPC scheme is bi-directional; it works exactly the same for
handling the client browser’s outgoing RPC calls.

To marshal arguments between Flash and JavaScript, we take



<img>

Web browser

swf '

doppelbrowser

internal Web server
GET /screen.jpg

jpeg image

GetDIBits()

Flashproxy

ajax

Windows VM

Figure 5: Remote display. Flashproxy uses the GetDIBits Windows
system call to grab screenshots of the Flash program executing in the
doppelbrowser on a Windows VM. The remote display AJAX compo-
nent on the user’s browser pulls screenshot updates from the Flash-
proxy internal Web server.

advantage of Flash’s built-in marshaling provided by External-

Interface. To marshal arguments between JavaScript located in
the doppelbrowser and on the client, we use the JSON format and
an open-source JSON library [16].

The client must be able to handle several types of RPC calls from
Flash. For example, it must be able to redirect the browser to a
new URL, which is necessary to support Flash’s ActionGetURL

instruction. Incoming Flash-to-JavaScript function calls amount to
simple local function invocations. A more complex example is the
ExternalInterface.addCallback call, which defines a Flash
function that JavaScript can invoke in a Flash movie. To handle
addCallback, the client’s RPC layer will synthesize and inject a
corresponding stub function into the document’s DOM, which will
enable code on the Web page to later find and invoke the Flash func-
tion. This invocation would follow the execution flow described
above, but in reverse.

The RPC nexus is implemented as an extended HTTP server
written in C++. It implements the request handling logic described
above and maintains data structures to forward calls in both direc-
tions. Since both JavaScript and Flash’s ActionScript are single-
threaded, the RPC nexus needs to support at most one outstanding
call from either the client’s browser or the doppelbrowser, simpli-
fying its implementation. However, the RPC nexus does handle the
case of multiple Flash programs embedded within the same Web
page.

One intricacy of the implementation is that XmlHttpRequests
made by the client and the doppelbrowser are restricted by the
browser’s same-origin policy. The origin for RPC nexus and remote
Web sites is different; thus, browsers would disallow direct commu-
nication with the RPC nexus. Fortunately, both browsers access the
Web through our proxy. When we issue XmlHttpRequests to the
RPC nexus, we prepend the URLs with the remote origin followed
by a special marker that instructs the proxy to forward the request
to the RPC nexus.

4.3 AJAX remote display
The AJAX remote display component runs in the client’s browser

and is responsible for displaying the graphical output of the Flash
program and for capturing and forwarding user input, such as mouse
clicks or keystrokes. We have implemented a fairly simple remote
display protocol; more sophisticated protocols, discussed in sec-
tion 7.3, would be applicable to Flashproxy.

To implement remote display, we periodically grab screenshots
of the Flash program running in the doppelbrowser and deliver

them to the client. Our doppelbrowser runs in a Windows vir-
tual machine. We use the Windows API functions BitBlt and
GetDIBits to grab screen pixels. The output is next passed through
a JPEG encoding library to construct an image the client’s browser
can download and render. These encoded JPEG screenshots are
delivered to the client through the internal Web server running on
Flashproxy. Figure 5 illustrates this process.

The client initializes AJAX remote display by declaring an HTML
image that points to our remote display server. This causes the
browser to issue an HTTP request to download the first screenshot
and render it. To force the image to refresh, the AJAX component
set the image’s onload property to execute an image update rou-
tine as soon as the image finishes rendering. The update function
appends a special token to the image’s URL, causing the browser
to re-fetch the image. This approach makes refresh adaptive to
both network transfer speeds and client rendering times; smaller
displays will automatically refresh faster than larger displays, be-
cause they take less time to transfer and render. This approach
works smoothly in practice and does not cause any display artifacts
such as flickering images.

Some Flash programs, such as slideshows, change their graph-
ical display infrequently. In such cases, the constant refreshing
as described above would waste bandwidth transferring the same
image many times. To remedy this, the remote display server de-
lays its response to the client’s image fetch request until it takes a
screenshot that the client has not previously seen. Screenshot com-
parison is done by hashing images.

The second major component of remote display traps client’s
user input and forwards it to the remote display server. Fortu-
nately, JavaScript provides facilities to interpose on the essential
forms of user input, including mouse movement, mouse clicks, and
keyboard input. Flashproxy’s client-side code installs hooks that
catch user input events and issue a special RPC call to the RPC
nexus. The RPC nexus forwards these events to the remote display
server, which synthesizes them in the doppelbrowser.

One important user input consideration is focus. Not all input on
the Web page is destined for Flash programs; for example, typing
in a HTML text field co-located on the same Web page should not
expose those keystrokes to Flashproxy. Therefore, Flashproxy only
processes input events that fire while a Flash program is in focus. A
Flash program receives focus when the user moves the mouse over
it, and loses focus when the mouse is moved elsewhere. Flashproxy
conveniently utilizes JavaScript’s onmouseover and onmouseout

properties for the remote display image to keep track of which
Flash program is in focus, if any. Each input event can then be
filtered, and only input destined for Flash will be sent to the appro-
priate doppelbrowser.

4.4 JavaScript code injected into the user’s
browser

To implement some of its functionality, Flashproxy injects spe-
cial JavaScript code into Web pages that flow through it. Some of
this code contains the logic that periodically looks for new Flash
content, as described in section 3.4. Flashproxy installs the code
as a JavaScript window.onload event that fires when the page fin-
ishes rendering. The Web page itself might have used window.on-
load for its own purposes; therefore, we tailpatch by saving the
previous function contained in window.onload and executing it
before running our code. To ensure that the Web page cannot
overwrite window.onload containing our logic, Flashproxy in-
jects this code into the bottom of the page.

As discussed in section 3.4, Flashproxy must fool the client’s
browser into believing that it has runtime support for Flash.



 

Category # of programs 
# successfully run 

by Flashproxy 

Navigation 16 16 (100%) 

Interactive features 15 13 (87%) 

Advertisements 11 10 (91%) 

Games 13 13 (100%) 

Static images and slideshows 23 23 (100%) 

Multimedia streaming 12 12 (100%) 

Animation 10 10 (100%) 

 
 

Table 1: Summary of results. We manually classified 100 randomly
selected Flash programs found by crawling the Web. Next, we dis-
abled Flash on a Firefox browser, and tested whether these 100 pro-
grams (and the pages that embed them) were successfully accessible
using Flashproxy.

The most widely-used method to check for plug-in support in-
volves checking either the navigator.plugins or the navi-

gator.mimeTypes arrays provided by the browser’s JavaScript
runtime. Unfortunately, we cannot insert new objects into these
structures because the browser disallows such modifications. A
complete solution would have to add an interposition layer to
the Web page code in the spirit of BrowserShield [21], and in-
tercept all references to these two arrays. However, as a practi-
cal and effective solution that works for most Web content, we
instrumented the proxy to look for “navigator.plugins” and
“navigator.mimeTypes” strings in Web pages, and rewrite them
into strings that refer to shadow copies of these arrays. Shadow
plug-in arrays have the same content as the originals plus a new el-
ement representing a fake Flash plug-in. Flashproxy initializes the
shadow plug-in arrays at the top of Web pages, so that any detection
code within the Web page can find these structures.

The detection code is implemented in 114 lines of JavaScript,
translating into a small 3.3KB increase in Web page size. When
a Flash object is found, the detection code will fetch and inject
additional code that implements the client’s RPC layer and AJAX
remote display. Flashproxy’s total client-side code when rendering
Flash consists of 484 lines or 10KB, which is remarkably small
considering the functionality it provides.

5. EVALUATION
In this section, we evaluate the effectiveness and performance of

our Flashproxy architecture and prototype. We first test whether
Flashproxy works in practice for Flash programs encountered in
real Web content. Next, we measure the performance of the three
major Flashproxy components: the binary rewriter, the RPC layer,
and the AJAX remote display. Finally, we briefly demonstrate the
security benefits of our system by showing that Flashproxy is able
to isolate the user’s browser from a Flash-based denial of service
attack.

5.1 Does Flashproxy work?
To understand how well Flashproxy works on real Web content,

we used the Heritrix crawler [15] to find 2,100 Flash programs on
the Web. We randomly selected 100 programs and manually in-
spected them. To understand the different ways in which Flash
is used, we classified these 100 programs into seven categories:
Flash-based Web page navigation, interactive features such as a
scoreboard or map, ads, games, static images or slideshows, mul-
timedia streaming applications such as YouTube, and finally, non-
interactive Flash animation.

 
Flash version 3 4 5 6 7 8 9 

# programs 1 
(0.05%) 

40 
(1.9%) 

180 
(8.6%) 

670 
(32%) 

449 
(21%) 

707 
(34%) 

53 
(2.5%) 

 

Table 2: Flash versions. This table shows the number of Flash pro-
grams of each version found during our crawl.

Table 1 shows the result. We found Flash programs evenly spread
through all categories, though images and slideshows were the most
common. We also analyzed all crawled Flash programs to test
which Flash version they were compiled with. Table 2 shows that
most Flash programs are version 5, 6, 7, or 8; older versions are
rare, as are newer Flash 9 programs.

Next, we tested whether Flashproxy was able to handle these
100 programs. To do this, we disabled Flash on a Firefox browser,
and then used Flashproxy to browse through the Web pages hosting
these programs. Table 1 shows the number and percentage of pro-
grams in each class that worked through Flashproxy. Flashproxy
was able to identify, rewrite, remotely execute, and remotely dis-
play 97 of the 100 programs.

Flashproxy failed to render three pages correctly. The first was
an SSL-encrypted HTTPS page, preventing the proxy from get-
ting access to the Web page content. The second contained buggy
JavaScript code. The Web page’s code throws an exception on
load, preventing our embedded detection and RPC code from exe-
cuting. Strictly speaking, this page did run correctly by crashing,
since the page itself is broken. The third page contained a Flash
ad, but used a method for testing for Flash support that our injected
JavaScript detection code missed. We have since added support for
this method, but more generally, we believe we would have to use
BrowserShield-like techniques [21] to catch and fool all JavaScript-
based mechanisms for testing Flash support.

We also tested these 100 programs with a Mobile Safari browser
running on an iPod Touch (iTouch). Overall, the iTouch was able
to render and remote display the same programs as was Firefox.
Figure 6 compares a New York Times Web page rendered on a
desktop Safari browser with Flash support enabled, with an iTouch-
based Safari browser that lacks Flash support visiting the same page
through Flashproxy.1 Flashproxy lets a user display and interact
with the Flash content using their iTouch, and had the iTouch user
visited the page without Flashproxy, their browser would have dis-
played an error message indicating a lack of Flash support.

Our evaluation did uncover some limitations. One Flash “greet-
ing card” program asked the user to cut and paste a link to the
card, but we have not attempted to integrate the clipboard of the
doppelbrowser with that of the user’s browser. Some Flash objects
contained audio streams, and our remote display AJAX component
does not currently support audio. Fixing both of these shortcom-
ings is possible, but left as future work.

Our iTouch evaluation also uncovered some user interface issues
specific to the iTouch’s touchscreen interface. For example, the
iTouch does not have a notion of mouse movement, because the
corresponding gesture controls the panning of the page instead. As
a result, some games which rely on dragging or moving the mouse
were limited in their use. As well, keyboard input on an iTouch is
troublesome, as Mobile Safari only displays the touch-based key-
board when a user clicks on a text field in a form.

1Note: this screenshot was taken using the iPhone simulator that ships with
the iPhone SDK. The display of the browser on the simulator is indistin-
guishable from that of the iTouch device itself.



(a) browsing using desktop Safari with Flash enabled

(b) browsing using iTouch Safari through Flashproxy

Figure 6: Screenshots. (a) A desktop Safari browser with Flash en-
abled viewing a New York Times page with a mixture of HTML and
Flash. (b) The iTouch Safari browser viewing the same content through
Flashproxy.

5.2 Binary rewriting
Flashproxy uses binary rewriting to interpose on interactions be-

tween Flash and its execution environment. We evaluated Flash-
proxy to answer the following questions:

• How often are the interposed functions found in real Flash
programs?

• How long does binary rewriting take in practice, and how
often does rewriting fail?

• How much execution overhead is experienced by rewritten
Flash programs?

To answer these questions, we analyzed the remaining 2,000
Flash programs gathered during the Web crawl.

5.2.1 Frequency of interposed functions
Table 3 shows the percentage of programs that contain each of

the functions or classes that Flashproxy interposes upon while bi-
nary rewriting; Section 3 discusses these functions. For exam-
ple, ExternalInterface methods were encountered in 11% of
crawled Flash programs, while we didn’t find any programs that

 
instruction, function, 

or class 
# programs found 

that contain it 
GetURL 1041 (52%) 

LoadMovie 470 (24%) 
LocalConnection 308 (15%) 
ExternalInterface 228 (11%) 

PrintJob 2 (0.1%) 
FileReference 0 (0%) 

 
 
 
 

Table 3: External interactions in Flash programs. This table shows the
number of Flash programs found in our crawl that contain each each
instruction, function, or class associated with an external interaction
that Flashproxy must trap.

used FileReference. Printing from Flash is similarly rare, whereas
redirecting a browser to a URL is common, being present in 52%
of Flash programs.

5.2.2 Latency and success rate of rewriting
Next, we tested how long it takes to rewrite flash programs. We

found this was fast; on average, rewriting a program took 1.26 sec-
onds on a 2.8GHz, dual-core Intel Xeon using Linux. Thus, bi-
nary rewriting will not significantly affect the startup latency of
Flash content. Binary rewriting does inflate the size of Flash pro-
grams, as we add bytecode instructions to every function invocation
within the program. In spite of this, the size of the rewritten Flash
programs increased by only 3.7% on average: the media content
within Flash programs dominates the bytecode. As well, although
rewriting might increase code size more for function-call intensive
programs, this would still not lead to any additional transfer time,
since a rewritten Flash program is served to the doppelbrowser over
a local connection rather than to the user’s browser over the wide-
area network.

We encountered 9 Flash programs (0.45%) that we could not
rewrite. These programs used code obfuscation and decompila-
tion prevention techniques that crashed the Flasm disassembler. We
should be able to improve the reliability of the disassembler to han-
dle this code, given that the Flash Player itself is able to disassemble
and execute them, however we have not tried to do so.

5.2.3 Runtime overhead introduced by rewriting
Because we inject additional instructions into a rewritten pro-

gram, it could experience runtime overhead and lower performance.
To quantify this, we wrote a Flash program that calls a null func-
tion 100,000 times, and measured its execution time before and
after binary rewriting. We found that each direct function call takes
11 microseconds, whereas a rewritten function call takes 26 mi-
croseconds. Although this seems like a significant slowdown, the
small code size increase measured in Section 5.2.2 suggests that
most instructions in Flash are not function calls, and that the frame
rate and execution speed of Flash is usually dominated by graphics
operations rather than frequent function calls.

5.3 RPC layer
Flashproxy’s JavaScript RPC layer forwards external calls be-

tween Flash programs running in the doppelbrowser and the user’s
browser. We now quantify the overhead of this call forwarding
path, broken down across the Flashproxy’s components.

To do this, we constructed a microbenchmark Flash program
that measures the latency of using ExternalInterace to invoke
a JavaScript function foo() defined by the Web page in which the
Flash program is embedded. This function accepts a single string
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Figure 7: Flash-to-JavaScript RPC overhead. The total call time from
(including return) from Flash to a remote JavaScript function is 41.4
ms, compared to 0.46 ms for a direct call from Flash to JavaScript on
the same browser.

argument and returns another string. We rendered the Web page
first using Firefox on a 2.4GHz Intel Core 2 Duo running Mac OS
X, and next using the same Firefox browser and client computer but
with Flash disabled and Flashproxy enabled. Flashproxy was run-
ning on a 2.8GHz Intel Xeon server running Linux, and the client
computer was connected to it and to the Web server over a 54 Mb/s
802.11g wireless LAN.

Our measurements show that a direct Flash-to-JavaScript call
(including return) takes 0.46 ms natively, while the same call takes
41.4 ms with Flashproxy, for an overhead of 40.9 ms. Figure 7
breaks down this overhead across the Flashproxy components. The
most expensive operations are the 14 ms network round-trip time
from our client to the RPC nexus, and the delays incurred internally
by the browser’s XMLRPC engine. As well, the RPC nexus takes
on average 4.5 ms to forward a call. We have not yet tried to opti-
mize the RPC nexus, and as such, its network and data forwarding
operations are quite inefficient. With some optimization we believe
we could remove most of the overhead in the RPC nexus.

The extra instructions inserted by our binary rewriter did not
significantly increase the latency of the ExternalInterface call
from Flash to JavaScript. This call took 0.46 ms natively and 0.5
ms with binary rewriting. Finally, argument marshaling and unmar-
shaling within the JavaScript RPC layer incurred some overhead as
well. We found that most of this overhead is attributable to the
JSON library we use.

Overall, we feel that 41.4 ms is acceptable for the RPC layer.
Flash-to-JavaScript calls are typically used to redirect the user’s
browser to a new Web page, or to pass to Flash text typed by the
user. For such infrequent uses, the overhead will be unnoticeable
to the user. However, Flashproxy could slow down Web applica-
tions that constantly exchange data between Flash and JavaScript,
although we believe this usage scenario is uncommon.

The RPC layer on the client browser is also responsible for for-
warding user input, such as mouse movements or key-presses. For-
warding requires an XMLRPC call to the RPC nexus, which then
executes the input event in the doppelbrowser. We found that it
takes 4 ms to transfer the event through the client browser’s XML-
RPC layer, 7 ms to transfer it to the RPC nexus over a wireless
network, and 1 ms to synthesize the event in the doppelbrowser, for
a total user input latency of 12 ms.

5.4 Remote display
The AJAX remote display component used by Flashproxy is

based on transferring JPEG-encoded screenshots from the doppel-

Flash program category size 
frame 
rate 

(laptop) 

frame 
rate 

(iTouch) 

Interactive navigation pane navigation 217x353 16 fps 7 fps 

large horizontal ad banner ads 728x90 15 fps 7 fps 

small side ad banner ads 350x40 21 fps 11 fps 

YouTube video streaming multimedia 497x418 14 fps 5 fps 

Funnyplace.org video streaming multimedia 320x260 20 fps 7 fps 

cartoon (using vector animation) animation 490x340 12 fps 5 fps 

maze highly-interactive game games 817x719 6 fps 2 fps 

poker game games 567x423 10 fps 4 fps 

full-screen highly-animated page feature 942x673 3 fps 2 fps 

 

 

 

Flash program 
bandwidth 
consumed 

CPU 
usage 

YouTube video streaming 81 KB/sec 20% 

ad banner  17% 

cartoon (using vector animation)   

 

Table 4: Remote display performance. Flashproxy achieves good
frame rates for most categories, especially ads and navigation. The per-
formance of the system degrades for highly-interactive programs with
a big display area.

browser, as described in Section 4. This simple approach works
surprisingly well for many types of Flash content. To quantify the
performance of our remote display implementation, we chose sev-
eral representative Flash programs from the categories defined in
table 1 and measured the performance the client experienced while
browsing through Flashproxy. We tested two client configurations:
a laptop with a Firefox Web browser with Flash disabled on a
2.4GHz Intel Core 2 Duo running Mac OS, and an iTouch with
a Mobile Safari browser (which lacks Flash support). Both clients
connected to the Internet over a 54 Mb/s 802.11g network.

Table 4 summarizes our results. For each Flash program, we
show the effective frame rate at which the client was able to view
it. We see that Flashproxy does well for most of the categories we
have examined. Small-area Flash programs such as ads render very
quickly on the desktop; the user experiences no noticeable display
lag. Larger animations and streaming video render fast enough for
the user to comfortably see the content, though there is a notice-
able reduction in frame rate. Full-screen, highly-animated Flash
pages performed poorly; their screenshots were large and changed
on every frame, taxing the client’s rendering engine and incurring
large transfer times. Highly-dynamic games experienced the same
problem, though games with a lower screenshot refresh rate such
as poker were quite playable. We did not evaluate static images
and slideshows, since these Flash programs only need one or a few
very infrequent display updates, and Flashproxy can trivially han-
dle them.

Although the iTouch performed 2x-3x slower on average than
the desktop, many Flash programs still performed surprisingly well
on the mobile device. For example, navigation panes, ads, and
smaller-size movies all achieved good responsiveness. In addition,
our remote display optimization of eliminating redundant screen
updates frequently masks the slower performance of the iTouch,
because with no outstanding screen updates, the client does not
consume any bandwidth or rendering resources.

Figure 8 illustrates this by showing the bandwidth consumed by
a slideshow Flash program on an iTouch and our laptop, with and
without our display optimization. For each elapsed second, the
y-axis shows bandwidth consumed in that second. Note that the
clients are the bottleneck; Flashproxy can always generate display
screenshots faster than the clients can consume them. In 35 of the
40 seconds shown, the number of screen updates is small, and the
display performance is identical on the laptop and the iTouch. The
spikes at the remaining 5 seconds represent slide transition effects.
Rapid display updates tax the client’s CPU, and as the result the less
powerful iTouch renders fewer display updates than the laptop. The
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Figure 8: Bandwidth consumed while rendering a slideshow Flash
program. With no display optimization, the laptop and the iTouch fetch
screen updates as fast as they can render them; the laptop consumes
2-3x more bandwidth than an iTouch. However, most screen updates
are unnecessary as they duplicate previous updates; our display op-
timization eliminates such updates and drastically reduces consumed
bandwidth.

available bandwidth is far from being saturated by either the laptop
or the iTouch. The graph also shows that our display optimization
saves a significant amount of bandwidth: the iTouch consumes 18
KB/s average bandwidth to render the slideshow, while the laptop
uses 37 KB/s, both lower than 83 KB/s and 320 KB/s they use with-
out the optimization.

While testing remote display, we noticed that the JPEG compres-
sion settings used to take screenshots can be tuned to improve frame
rates. Aggressive JPEG compression can dramatically reduce file
sizes and thus network transfer time, at the cost of display quality.
For example, Figure 9 shows the frame rate for a YouTube video
displayed through Flashproxy as we vary the JPEG quality knob.
With no compression, the frame rate is 4.7 fps, but with compres-
sion set at 60%, it is nearly three times higher. Depending on the
type of Flash program, we could tune JPEG compression to provide
the best balance of quality and performance. For example, higher
frame rate is more important in streaming video, while slideshows
or mostly static navigational Flash require higher-quality display.
Exploring dynamic quality adaptation is future work. For our ex-
periments, we set the JPEG quality to 60%, which achieves a good
balance between quality and performance.

Remote display consumes a different amount of network band-
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Figure 9: YouTube video frame rate vs. JPEG quality. More compres-
sion produces smaller screenshots, improving frame rate but decreas-
ing quality. Our display optimization was enabled during this experi-
ment, but ineffective as every frame of the video was distinct.

width than a native Flash program. We measured the amount of
traffic consumed by a bandwidth-intensive Flash program – a 38-
second YouTube video. To render this video with a native Flash
plug-in, a client will transfer the full 1.5 MB video. Spread over
38 seconds, this averages to 40 KB/s, though in practice a client
will transfer the video as quickly as possible. With Flashproxy, a
client receives display updates at 14 frames per second, resulting
in 81 KB/s of steady-state bandwidth and a total transfer of 3.1
MB over the lifetime of the movie. Given the unoptimized nature
of our remote display mechanism, this overhead seems acceptable.
We have not yet explored alternate remote display implementations
that would allow us to decrease bandwidth consumption, though re-
lated work suggests this is possible [17].

5.5 Security
One benefit of Flashproxy is that the Flash Player is isolated from

the client in a remote sandbox. Thus, any vulnerabilities in the
Flash player cannot be used to affect the client. Although we could
not find a malicious Flash program to test, there have been public
reports of Flash vulnerabilities and the existence of exploit pro-
grams [26]. We did, however, find a Flash program that exploited
a bug in the Flash plug-in to perform a denial of service attack and
either crash or hang the user’s browser [25]. We verified that by us-
ing Flashproxy, the client avoids these attacks. Instead, the attacks
affect the doppelbrowser; however, Flashproxy can easily destroy
the virtual machine sandbox enclosing the doppelbrowser to deal
with such an attack.

5.6 Summary
In this section, we evaluated the functionality and performance

of Flashproxy using a combination of real-world Flash programs
and microbenchmarks. Flashproxy correctly rendered nearly all
content we exposed it to. The AJAX remote display performs
well for many classes of Flash programs, such as dynamic naviga-
tion menus, slideshows, ads, and even YouTube streaming videos,
where it achieved a display throughput of 14 frames per second.
We also demonstrated the security benefits of Flashproxy, showing
that a malicious Flash program was isolated from the client.



6. EXTENDING FLASHPROXY BEYOND
FLASH

Flashproxy currently supports only Flash programs. As a thought
exercise, we considered whether Flashproxy could be extended to
support other forms of active Web content. In particular, we ex-
amined what it would take to support Microsoft’s Silverlight, an
emerging standard for rich multimedia Web applications.

Several components of Flashproxy would stay virtually un-
changed, including the remote display, user input forwarding, Web
proxy, DOM-based plug-in object detection, and client AJAX code.
Supporting Silverlight would require us to implement a new binary
rewriting engine for Silverlight code, and to figure out how to use
binary rewriting to interpose on interactions between Silverlight
and the browser.

Silverlight is currently available in two versions. In version 1.0, a
Silverlight program consists of an object description in a text-based
XAML markup language, which defines the graphics, audio, and
video components of the application, and JavaScript code, which is
defined in the Web page hosting the application. Similar to HTML,
XAML content does not compute anything by itself. Instead, it
uses JavaScript on the hosting page to handle certain events, such
as user input.

To support Silverlight 1.0, Flashproxy would need a new text-
based rewriting engine, but it could reuse all of its other compo-
nents. The rewriting engine would find all references to JavaScript
functions in XAML files and rewrite them into stubs that will use
Flashproxy’s RPC layer to forward calls from the doppelbrowser to
the client browser. Unlike Flash, XAML files are not binary and
should be easily parsable. In addition, JavaScript on a hosting page
can access elements defined in a XAML file, for example by find-
ing the application’s plugin instance in the DOM and using "con-
tent.FindName". Such references could be rewritten similarly to
ExternalInterface.addCallback’s implementation for Flash.

Silverlight 2.0 (currently in beta) adds support for application
code written in Microsoft’s .NET Framework languages, such as
C#. Like Flash programs, Silverlight 2.0 .NET applications run in
a sandbox that provides the necessary .NET runtime support and
enforces security policies. Silverlight 2.0 ships with a lightweight
class library that is considerably smaller than .NET Framework’s
base class library. It prohibits use of security-sensitive .NET com-
ponents, such as local file I/O, and replaces them with safe equiva-
lents, such as the System.IO.IsolatedStorage classes. .NET-
based Silverlight 2.0 applications contain a binary component that
specifies the code to be executed in MSIL, a low-level language
similar to Java bytecode.

Like Flash, Silverlight 2.0’s runtime supports classes and meth-
ods that access or modify external state and therefore must be rewrit-
ten by Flashproxy. Thus, Flashproxy would need another binary
rewriter for MSIL. Fortunately, we can leverage many existing tools,
including Microsoft’s own MSIL assembler and disassembler.

Many external-state classes of .NET are already disallowed
by Silverlight’s security policy. We anticipate the vast major-
ity of the remaining changes would be located in the System.-

Windows.Browser.* classes, which allow Silverlight applica-
tions to programmatically access and manipulate the Web page’s
DOM. For example, the HtmlDocument or HtmlElement Sil-
verlight classes have methods corresponding to JavaScript’s native
methods for document and element objects; e.g., HtmlDocument’s
GetElementByID() corresponds to JavaScript’s document.-

getElementById(). When an application invokes such a method,
Silverlight marshals the arguments and executes the corresponding
native JavaScript function in the browser. Flashproxy would need

to rewrite all of these DOM-related methods into its own stubs,
which would then relay the execution from the doppelbrowser into
the client browser.

The existing RPC layer implementation could be mostly reused.
One change we would need to make is to add support for Sil-
verlight’s multithreading. Flash programs are single-threaded, and
therefore our RPC layer currently only supports one outstanding
call. It should be straightforward to extend the RPC layer with
buffering and queueing to support multiple outstanding calls.

7. RELATED WORK
Flashproxy builds upon ideas from three research areas: the use

of proxies to support mobile devices and software, applications of
binary rewriting, and the use of remote display. We discuss each of
these areas in turn.

7.1 Proxies for supporting mobile devices
Many research projects and commercial systems use proxies to

support mobile computing. Proxies are generally used to adapt con-
tent to better suit the network, hardware, and software characteris-
tics of the remote device. Proxies have been used to adapt Web
content for mobile devices [2 9 10], to bridge heterogeneous mul-
ticast groups together and adapt data flowing between them [4], to
enable collaboration and document editing on bandwidth-limited
devices [6], and to facilitate application-specific control and data
adaptation by using existing application component APIs [7].

Brooks et al. define the notion of an HTTP stream transducer [3];
a transducer is a generalization notion of a Web proxy that views
and potentially alters HTTP content as it flows between servers and
clients. Zenel discusses a proxy-based filtering architecture that
supports the dynamic, transparent insertion of application and pro-
tocol specific filters [34].

Flashproxy can be seen as an example of a stream transducer or
a point instantiation of Zenel’s filtering architecture. More broadly,
Flashproxy is similar to all of this earlier work on proxy-based
content adaptation for mobility, but it focuses on the mechanisms
needed to support active content, such as Flash.

7.2 Binary rewriting
Binary rewriting has been used in many application domains, in-

cluding software-based fault isolation [33], virtualization [1], and
code obfuscation to prevent reverse engineering [19]. Toolkits exist
to facilitate binary rewriting on particular hardware architectures;
for example, Diablo provides a retargetable link-time binary rewrit-
ing framework, supporting ARM, i386, IA64, Alpha, and MIPS
architectures [32]. Diablo has been used to enable applications
such as program compaction, performance optimization, obfusca-
tion, and instrumentation. The goal of binary translation, a variant
of binary rewriting, is to convert programs compiled for older sys-
tems to new architectures [28].

Binary rewriting techniques have been applied to bytecode-
oriented programs [5 18]. Naccio uses binary rewriting to enforce
safety policies expressed in a high-level language on Java byte-
code [8]. Similar in some regards to Flashproxy, Rico [29] and PB-
Jars [30 31] use a Web proxy to mediate all HTTP requests from a
population of Web browsers, identifying embedded Java programs.
Like Naccio, these systems use binary rewriting to enforce addi-
tional security policies on the Java programs to improve end-host
security.

DVM uses a proxy to intercept Java code downloads in an en-
terprise or other organizational setting, and uses binary rewriting
to factor out Java code verification, security services, and remote
monitoring [27]. Like Flashproxy, DVM eliminates complexity



from end hosts; unlike Flashproxy, DVM still requires a bytecode
virtual machine on end hosts to execute the rewritten Java code.

Simple Flash binary rewriting tools exist, but they are mostly
used as code obfuscators to prevent the reverse engineering of Ac-
tionScript programs [13]. In contrast, Flashproxy relies on Flash
binary rewriting to interpose on the external interactions of a Flash
program. Flashproxy builds on the open-source Flasm assembler
and disassembler [14] to implement its binary rewriter.

7.3 Remote display
Remote display has been used in many systems to provide loca-

tion transparency or remote access. The X windows system was
one of the earliest to support remote display, and it permits individ-
ual applications’ interfaces to be projected across a network [23].
VNC is a virtual screen buffer, permitting the entire windowing
system of an operating system to be remotely displayed [22]. Many
commercial systems have improved the performance and reliabil-
ity of remote display, including Sun Ray [24], Citrix [20], and Mi-
crosoft’s RDP.

Remote display has been adapted to mobile and low bandwidth
environments. For example, low-bandwidth X (LBX) uses a caching
and compression proxy server deployed at X clients to reduce the
amount of traffic sent to X servers [11]. More recently, pTHINc [17]
explored remote display mechanisms for enabling Web browsing
on mobile, wireless devices such as PDAs. pTHINc demonstrates
that it is possible to provide rich, usable remote display on con-
strained devices for the kinds of content types and applications that
Flashproxy is likely to encounter.

8. CONCLUSIONS
In this paper, we described a proxy-based technique for trans-

parently supporting active content, such as Flash or Silverlight, on
mobile browsers that do not have built-in support for that content.
Our approach relies on the proxy to splice out the embedded ac-
tive content from the Web page and to replace it with an AJAX-
based remote display Web component. The spliced out active con-
tent is executed instead in a sandbox on the remote proxy. We
designed, implemented, and evaluated Flashproxy, a prototype of
our approach that provides Flash support to any browser that has
JavaScript and sufficient bandwidth.

A challenge to getting our approach to work is handling inter-
actions between a Flash program and its execution environment,
including calls made between a Flash program and JavaScript func-
tions on the embedding page, or directives issued from Flash to the
browser to navigate to new pages. To handle these interactions,
Flashproxy uses binary rewriting to insert interposition hooks on
the relevant Flash function and method calls. Flashproxy relays
these calls to the user’s browser with a JavaScript-based RPC layer.

We evaluated Flashproxy using a combination of microbench-
marks and manual examination of Web pages containing Flash pro-
grams discovered using a Web crawler. Our evaluation shows that
Flashproxy is able to execute virtually all Flash programs we en-
countered successfully, and that the resulting system has adequate
performance for many classes of Flash content. As well, we demon-
strated that Flashproxy is able to isolate the user and her browser
from security flaws in Flash programs or within the Flash run-
time environment itself. Overall, our experience with Flashproxy
demonstrates the transparency and effectiveness of our approach.
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