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Abstract

In this paper, we present the analysis of a large
client-side web trace gathered from the Home IP
service at the University of California at Berke-
ley. Speci�cally, we demonstrate the heterogeneity
of web clients, the existence of a strong and very
predictable diurnal cycle in the clients' web activ-
ity, the burstiness of clients' requests at small time
scales (but not large time scales, implying a lack
of self-similarity), the presence of locality of refer-
ence in the clients' requests that is a strong func-
tion of the client population size, and the high la-
tency that services encounter when delivering data
to clients, implying that services will need to main-
tain a very large number of simultaneously active
requests. We then present system design issues for
Internet middleware services that were drawn both
from our trace analysis and our implementation ex-
perience of the TranSend transformation proxy.

1 Introduction

The growth of the Internet, and particularly
of web-oriented middleware services ([15], [3], [6])
within the Internet, has seen a recent explosion
[31]. These middleware services, particularly the
more popular services that experience extremely
high load, must overcome a number of challeng-
ing system design issues in order to maintain fast
response time, constant availability, and capacity.
Services must be able to accommodate an increas-
ingly varied client population (in terms of hardware,
software, and network connectivity). They must be
able to handle o�ered loads of hundreds of requests
per second, and because of the often slow connectiv-
ity to clients and the implied lengthy delivery times,
they must be able to handle hundreds of simultane-
ously outstanding tasks.

Previous work has explored the performance of
operating system primitives and the relationship be-

tween OS performance and architecture ([29], [2]),
and operating system design issues for busy Internet
services ([19], [27]). In contrast, this paper raises a
number of system design issues speci�cally for In-
ternet middleware services. These issues were en-
countered during two separate but related e�orts:
the analysis of a set of extensive client-side HTTP
[5] traces that we gathered from the University of
California at Berkeley's dial-in modem banks during
October and November of 1996, and the implemen-
tation and deployment experience we gained from
the TranSend Internet middleware service [15].

Since nearly 70% of all Internet clients use dial-in
modems of speeds of 28.8 Kb/s or less [18], we use
the traces to make a number of observations about
the Internet user population and the services with
which they communicate. Section 2 discusses the
gathering of the traces, including the tools used and
the information gathered, and section 3 performs a
detailed analysis of these traces, both in terms of
observations made about the client population and
the services themselves. In section 4, we discuss
the middleware system design issues drawn from our
experience with the TranSend transformation proxy
service, and in section 5 we present related work.
Finally, in section 6 we conclude.

2 Home IP Trace Gathering

During October and November of 1996, we gath-
ered over 45 consecutive days worth of HTTP
traces from the Home IP service o�ered by UC
Berkeley to its students, faculty, and sta� avail-
able to researchers. (Two and a half weeks worth
of anonymized versions of these traces have been
made available at http://www.acm.org/ita.) Home
IP provides dial-up PPP/SLIP connectivity using
2.4 kb/s, 9.6 kb/s, 14.4 kb/s, or 28.8 kb/s wireline
modems, or Metricom Ricochet wireless modems
(which achieve approximately 20-30 kb/s through-
put with a 500 ms RTT).
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Figure 1: The Home IP Tracing Environment

2.1 IPSE

The HTTP client traces were unobtrusively gath-
ered through the use of a packet sni�ng machine
placed on a 10 Mb/s Ethernet segment at the head-
end of the Home IP modem bank through which
all IP tra�c owed (�gure 1). The trace gathering
program that we used was a custom HTTP mod-
ule written on top of the Internet Protocol Scan-
ning Engine (IPSE)[17]. IPSE is a user-level packet
�lter that runs on Linux; IPSE allows �lter mod-
ules to capture TCP segments and recreate the TCP
streams observed by the endpoints of the TCP con-
nection. The custom module was therefore able to
parse each HTTP request as it was happening, and
write out the salient features of each HTTP request
to a log �le on-the-y. Only tra�c destined for port
80 was traced; all non-HTTP protocols and HTTP
connections to other ports were excluded. Each user
of the Home IP service is assigned a static IP ad-
dress, so we could track individual users over the
entire duration of the tracing experiment.

2.2 The Trace Files

The 45 day trace contains approximately
24,000,000 HTTP requests, representing the web
sur�ng behaviour of over 8,000 unique clients. The
trace capture tool collected the following informa-
tion for each HTTP request seen:

� the time at which the client made the request,
the time that the �rst byte of the server re-
sponse was seen, and the time that the last byte
of the server response was seen,

� the client and server IP addresses and ports,

� the values of the no-cache, keep-alive,
cache-control, if-modi�ed-since, usera-

gent, and unless client headers (if present),

� the values of the no-cache, cache-control,
expires, and last-modi�ed server headers (if
present),

� the length of the response HTTP header and
response data, and

� the request URL.

IPSE wrote this information to disk in a com-
pact, binary form. Every four hours, IPSE was shut
down and restarted, as its memory image would get
extremely large over time due to a memory leak that
we were unable to eliminate. This implies that there
are two potential weaknesses in these traces:

1. Any connection active when the engine was
brought down will have a possibly incorrect
timestamp for the last byte seen from the
server, and a possibly incorrect reported size.

2. Any connection that was forged in the very
small time window (about 300 milliseconds)
between when the engine was shut down and
restarted will not appear in the logs.

We estimate that no more than 150 such entries
(out of roughly 90,000-100,000) are misreported for
each 4 hour period.

3 Trace Analysis

In this section, we present the results of our anal-
ysis of the Home IP traces. In section 3.1, we
demonstrate the heterogeneity of the observed client
population. Section 3.2 discusses the request rates
and interarrival times generated by the client popu-
lation. In 3.3, object type and size distributions are
presented. Section 3.4 demonstrates the existence
of locality of reference within the traces through the
use of a number of cache simulations driven by trace
entries. Finally, section 3.5 presents distributions of
service response times, and argues that at any given
time, a very large number of outstanding requests
will be owing through middleware or end services.

3.1 Client Heterogeneity

Table 1 lists the most frequently observed \User-
Agent" HTTP headers observed within the Home
IP traces. From this table, it is easy to make a
common misconclusion about web clients, namely
that the set of web clients in use is extremely ho-
mogeneous, as nearly all browsers observed in our
traces are either the Netscape Navigator [28] or Mi-
crosoft Internet Explorer (MSIE) [26] browsers run-
ning on the Windows or Macintosh operating sys-
tems. However, there is signi�cant heterogeneity



arising from the many versions of these browsers
and their widely varying feature sets. Furthermore,
we observed a total 166 di�erent UserAgent values
within the traces, representing a wide range of desk-
top systems (MacOS, Win16, NetBSD, Linux, etc.)
More signi�cantly, however, we saw requests from
a number of exotic clients such as Newton PDAs
running the NetHopper [1] browser.

Browser OS % Seen

Windows 95 55.1
Macintosh 19.7

Netscape Windows (other) 8.8
Windows NT 3.5

Linux 2.2
Other 0.4

Windows 95 7.6
Macintosh 0.6

MSIE Windows NT 0.7
Windows (other) 0.1
Other 1.3

Table 1: UserAgent HTTP headers: this ta-
ble lists the 10 most frequent UserAgent headers
observed in the traces. \Other" browsers observed
include PointCast, Cyberdog, Mosaic, Opera, Lynx,
JDK, and NetHopper.

Internet services that do not want to limit the
e�ective audience of their content must therefore be
able to deliver content that suits the needs of all of
these diverse clients. Either the services themselves
must adapt their content, or they must rely on the
emergence of middleware services (such as in [13],
[14], and [7]) to adapt content on the y to better
suit the clients' particular needs.

3.2 Client Activity

As seen in �gure 2, the amount of activity seen
from the client population is strongly dependent on
the time of day. The Berkeley web users were most
active between 8:00pm and 2:00am, with nearly no
activity seen at 7:00am. Services that receive re-
quests from local users can thus expect to have
widely varying load throughout the day; interna-
tionally used services will most probably see less of a
strong diurnal cycle. Other details can be extracted
from these graphs. For example, there is a decrease
of activity at noon and at 7:00pm, presumably due
to lunch breaks and dinner breaks, respectively.

The diurnal cycle is largely independent of the
day of the week, but there are some minor di�er-
ences: for instance, on Fridays and Saturdays, the

y = -6.1821E-12x5 + 2.1835E-08x4 - 2.7523E-05x3 + 
0.014338x2 - 2.2155x + 209.70
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Figure 3: Average diurnal cycle observed within
the traces - each minutes worth of activity shown
is the average across 15 days worth of trace events.
The y-axis shows the average number of observed
requests per minute.

tra�c peaks are slightly higher than during the rest
of the week. However, the gross details of the traces
remain independent of the day of the week. We
calculated the average daily cycle observed by aver-
aging the number of events seen per minute for each
minute of the day across 15 days of tra�c. For our
calculation, we picked days during which there were
no anomalous trace e�ects, such as network out-
ages. Figure 3 shows this average cycle, including a
polynomial curve �t that can be used to calculate
approximate load throughout a typical day.

On shorter time scales, we observed that client
activity was less regular. Figure 4 illustrates the
observed request rate at three time scales from a
one-day segment of the traces. At the daily and
hourly time scales, tra�c is relatively smooth and
predictable - no large bursts of activity are present.
At the scale of tens of seconds, very pronounced
bursts of activity can be seen; peak to average ratios
of more than 5:1 are common.

Many studies have explored the self-similarity of
network tra�c ([4], [16], [21], [22], [24], [30]), in-
cluding web tra�c [9]. Self-similarity implies bursti-
ness at all timescales - this property is not com-
patible with our observations. One indicator of
self-similarity is a heavy-tailed interarrival process.
As �gure 5 clearly shows, the interarrival time of
GIF requests seen within the traces is exponentially
distributed, and therefore not heavy tailed. (We
saw similar exponential distributions for other data
types' request processes, as well as for the aggregate
request tra�c.) These observations correspond to
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Figure 2: Diurnal cycle observed within the traces - each graph shows 1 day worth of trace events. The
y-axis shows the number of observed requests per minute.
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Figure 4: Request rate observed over a 24 hour, 3
hour, and 3 minute period of the traces.

requests generated from a large population of inde-
pendent users.

Internet services must be able to handle rapidly
varying and bursty load on �ne time scales (on the
order of seconds), but these bursts tend to smooth
themselves out on larger time scales (on the order
of minutes, hours, or days). The provisioning of re-
sources for services is therefore somewhat simpli�ed.

3.3 Reference type and size distribu-
tions

Section 3.1 answered the question of who is re-
questing data, and section 3.2 discussed how often
data is requested. In this section, we inspect the na-
ture of the data that is requested. Figure 6a shows
the mime type breakdown of the transferred data
in terms the number of bytes transferred, 6b shows
this breakdown in term of �les transferred.

From �gure 6a, we see that most of the bytes
transferred over the Home IP modem lines come
from three predominant mime types: text/html,
image/gif, and image/jpeg. Similarly, �gure 6b
shows that most �les sent over the modem lines have
the same three predominant mime types. Inter-
estingly, however, we see that although most bytes
transferred correspond to JPEG images, most �les
transferred correspond to GIF images. This means
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Figure 5: Interarrival time distribution for GIF
data type requests seen within a day-long trace por-
tion. Note that the Y-axis is on a logarithmic scale.

that, on average, JPEGs are larger than GIFs.
The fact that nearly 58% of bytes transferred and

67% of �les transferred are images is good news
for Internet cache infrastructure proponents. Im-
age content tends to change less often than HTML
content - images are usually statically created and
have long periods of stability in between modi�ca-
tion, in comparison to HTML which is becoming
more frequently dynamically generated.
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Figure 7: Size distributions by MIME type,
shown on a logarithmic scale. The average HTML
�le size is 5.6 kilobytes, the average GIF �le size is
4.1 kilobytes, and the average JPEG �le size is 12.8
kilobytes.

In �gure 7, we see the distribution of sizes of �les
belonging to the three most common mime type.
Two observations can immediately be made: most
Internet content is less than 10 kilobytes in size, and
data type size distributions are quite heavy-tailed,
meaning that there is a non-trivial number of large
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Figure 6: Breakdown of bytes and �les transferred by MIME type

data �les on the web. Looking more closely at in-
dividual distributions, we can con�rm our previous
hypothesis that JPEG �les tend to be larger than
GIF �les. Also, the JPEG �le size distribution is
considerably more heavy-tailed than the GIF dis-
tribution. There are more large JPEGs than GIFs,
perhaps in part because JPEGs tend to be photo-
graphic images, and GIFs tend to be cartoons, line
art, or other such simple, small images.

There are other anomalies in these distributions.
The GIF distribution has two visible plateaus, one
at roughly 300-1000 bytes, and another at 1000-
5000 bytes. We hypothesize that the 300-1000 byte
plateau is caused by small \bullet" images or icons
on web pages, and the 1000-5000 byte plateau rep-
resents all other GIF content, such as cartoons,
pictures, diagrams, advertisements, etc. Another
anomaly is the large spike in the HTML distribu-
tion at roughly 11 kilobytes. Investigation revealed
that this spike is caused by the extremely popular
Netscape Corporation \Net Search" page.

3.4 Locality of Reference

A near-universal assumption in systems is that
of locality of reference, and the typical mechanism
used to take advantage of this locality of reference
is caching ([11], [8]). The e�ectiveness of caching
depends upon a number of factors, including the
size of the user population that a cache is serving
and the size of the cache serving that population.

To measure the e�ectiveness of infrastructure
caching (as opposed to client-side or server-side
caching) with respect to the HTTP references cap-
tured from the Home IP population, we imple-
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Figure 8: Hit rate vs. Cache size for a number
of di�erent user population sizes.

mented a cache simulator and played segments of
the traces at these caches. We �ltered out requests
from all but a parameterizable set of client IP ad-
dresses in order to simulate client populations of dif-
ferent sizes. The cache simulator obeyed all HTTP
cache pragmas (such as the no-cache pragma, the if-
modi�ed-since header, and the expiry header), and
implemented a simple LRU eviction policy. Figure
8 shows measured cache hit rate as a function of
cache size for di�erent user population sizes, and
�gure 9 shows measured hit rate as a function of
user population size for di�erent cache sizes.

Figure 8 shows two trends: the �rst is that an in-
creasingly large cache size results in an increasingly
large cache hit rate. The second trend is that we ob-
served that hit rate is a very strong function of the
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Figure 9: Hit rate vs. User Population size for
a number of cache sizes.

user population size. As the population gets larger,
the locality of reference within that population gets
stronger, and caches become more e�ective. For a
given population size, the cache hit rate as a func-
tion cache size plateaus at the working set size of
that population. In �gure 9, one additional trend
can be observed: as the user population size grows,
if the cache size does not also pace the increasingly
large working set of that population, the cache hit
rate will start to drop as the cache e�ectively begins
to thrash from constant evictions.
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R2 = 0.9743
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Figure 10: Asymptotic Hit Rate vs. User Pop-

ulation Size

An interesting question is: what is the maxi-
mum possible cache performance for a given user
population size? In �gure 10, we have plotted the
asymptotic hit rate achieved in the limit of in�nitely
large cache size as a function of the user population
size. In other words, this graph explicitly shows the
cachable working set size of a given user population
size. We see that for the range of population sizes
that we can model from our traces, the asymptotic
hit rate grows logarithmically with population size.

Obviously, this logarithmic increase cannot continue
forever, as there is a maximum possible hit rate of
100%; unfortunately, our traces do not contain a
large enough population size to see the logarithmic
increase tail o�.

A factor that can alter the performance of Inter-
net caches is the increasingly prevalent use of cache
pragmas in HTTP headers. To investigate this ef-
fect, we measured the percentage of HTTP client
requests and server responses that contained rele-
vant headers, namely:

no-cache: This header can be supplied by either
the client or the server, and indicates that the
requested or returned data may not be served
out of or stored in a client-side or proxy cache.

cache-control This is a generic, extensible HTTP
header whose value contains the real directive.
Cache-control is intended to be used to sup-
ply additional caching directives that are inter-
preted by middleware caches, rather than by
the end server or client.

if-modi�ed-since This HTTP header allows a
client to specify that a document should be re-
turned only if it has been modi�ed after a cer-
tain date. If it hasn't, then the client uses a
locally cached version.

expires This HTTP header allows a server to sup-
ply an expiry date for returned content. Caches
obey this directive by treating cached data as
stale if the expiration date has occurred.

last-modi�ed This HTTP header allows a server
to indicate when a document has last been
modi�ed. This is typically used as a hint for
caches when calculating time-to-live (TTL) val-
ues, or when returning HTTP headers in re-
sponse to a client's HEAD request.

As can be seen in table 2, most HTTP headers
that can a�ect cache performance are rarely used.
The most frequently used header is the last-modi�ed
server response header; this header is now com-
monly returned by default from most HTTP servers.
The presence of this header in data stored within a
middleware cache or end server can be compared
to the value of the if-modi�ed-since client header to
test whether or not cached data is stale. Unfortu-
nately, only 1/4 of the client requests contained this
header. Cache-control, no-cache, and expiry head-
ers are extremely infrequent. These headers should
become more commonly used once HTTP 1.1 com-
pliant browsers and servers are deployed.



Pragma occurrence 11/8/96 4/28/97

(C) no-cache 7.2% 5.7%
(C) cache-control 0% 0.004%

(C) if-modi�ed-since 22.8% 20.6%

(S) no-cache 0.2% 0.5%
(S) cache-control 0.1% 0.5%

(S) expires 4.7% 5.0%
(S) last-modi�ed 54.3% 54.5%

Table 2: HTTP header frequencies: this ta-
ble summarizes the percent of HTTP client requests
(C) and server responses (S) that contained various
HTTP headers that a�ect caching behaviour.

Internet services can bene�t quite strongly from
caching, as there is signi�cant locality in a user pop-
ulation's references. Services must be careful to de-
ploy an adequately large cache in order to capture
the working set of that population.

3.5 Service Response Times

The recently emerging class of middleware ser-
vices must take into consideration the performance
of conventional content-providing Internet services
as well as the characteristics of the client population.
Middleware services retrieve and transform content
on behalf of clients, and as such interact directly
with content-providing services, relying in part on
the services' performance to determine their own.

In �gure 11, we present a breakdown of the time
elapsed during the servicing of clients' requests. Fig-
ure 11a shows the distribution of the elapsed time
between the �rst byte of the client request and the
�rst byte of the server's response observed by the
trace gatherer, shown using both a linear and a log-
arithmic y-axis. This initial server reaction time dis-
tribution is approximately exponentially decreasing,
with the bulk of reaction times being far less than a
second. Internet services are thus for the most part
quite reactive, but there is a signi�cant number of
very high latency services.

Figure 11b shows the distribution of the elapsed
time between the �rst observed server response byte
and the last observed server response byte (as mea-
sured by when the TCP connection to the server is
shut down).1 From these graphs, we see that com-
plete server responses are usually delivered to the
clients in less than ten seconds, although a great

1Persistent HTTP connections were very uncommon in

these traces, but these special cases were handled correctly

- the elapsed time until the last byte from the server for a

given request is seen is reported in these �gures.

number of responses take many tens of seconds to
deliver. (Bear in mind that the response data is be-
ing delivered over a slow modem link, so this is not
too surprising.)

A number of anomalies can be seen in this graph,
for instance the pronounced spikes at 0, 4, 30, and
roughly 45 seconds. The spike at 0 seconds corre-
sponds to HTTP requests that failed or returned
no data. The spike at 4 seconds remains a bit of
a mystery - however, note that the 4 second deliv-
ery time corresponds to 14 KB worth of data sent
over a 28.8 KB modem, which is almost exactly
the size of the \home igloo.jpg" picture served from
Netscape's home page, one of the most frequently
served pages on the Internet. We believe that the
spikes at 30 and 45 seconds most likely correspond
to clients or servers timing out requests. Finally, �g-
ure 11b shows the distribution of total elapsed time
until a client request is fully satis�ed. This distribu-
tion is dominated by the time to deliver data over
the clients' slow modem connections.

From these measurements, we can deduce that
Internet servers and middleware services must be
able to handle very large amounts of simultaneous,
outstanding client requests. If a busy service ex-
pects to handle many hundreds of requests per sec-
ond and requests take tens of seconds to satisfy,
there will be many thousands of outstanding re-
quests at any given time. Services must be care-
ful to minimize the amount of state dedicated to
each individual request the overhead incurred when
switching between the live requests.

3.6 Summary

This section of the paper presented a detailed
analysis of the Berkeley Home IP traces. We demon-
strated the heterogeneity of the user population, the
burstiness of tra�c a �ne-grained time scales, the
presence of a strong and predictable diurnal tra�c
cycle, locality in client web requests, and the heavy-
tailed nature of web service response times. In the
next section, we discuss how these observations re-
late to a real Internet middleware service designed
at Berkeley, the TranSend distillation proxy.

4 System Design Experience from

TranSend

The TranSend middleware service provides distil-
lation ([13], [14]) services for the Berkeley Home IP
modem user population, representing roughly 8,000
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Figure 11: Response time distributions (a) elapsed time between the �rst observed byte from the client
and the �rst observed byte from the server, (b) elapsed time between the �rst observed byte from the server
and the last observed byte from the server, and (c) total elapsed time (between the �rst observed byte from
the client and the last observed byte from the server). All distributions are shown with both a linear and
a logarithmic Y-axis.

active users of a bank of 600-700 modems. Distil-
lation is data-type speci�c, lossy compression - for
example, a distilled image may have reduced reso-
lution or color depth, sacri�cing image quality for
compactness of representation. Although a small
additional latency is introduced by performing dis-
tillation, the byte-wise savings realized by the more
compact distilled representations more than com-
pensates for the latency of performing the distil-
lation, resulting in a factor of 3-7 reduction in the
end-to-end latency of delivering web content to users
over their slow modem links. It was therefore an ex-
plicit design goal of TranSend to help mitigate the
heterogeneity of Internet clients by adapting servers'

content to clients' needs.

4.1 Burstiness

The TranSend service runs on a cluster of high
performance workstations. Client requests are load
balanced across machines in the cluster in order to
maximize request throughput and minimize the end-
to-end latency of each request through the system
[15]. As observed in the Home IP traces, the load
presented to TranSend is quite bursty on time scales
on the order of seconds. Fortunately, the service
time for an individual request is on the order of mil-
liseconds; if a burst of tra�c arrives at the system, it
takes only a few seconds for the backlog associated



with that burst to be cleared from the system.
Over longer time scales, we have indeed observed

relatively stable, non-bursty load. Certain real-
world events (such as the publication of an article in
the campus newspaper about the service) did trig-
ger temporary load bursts that persisted for hours,
however these bursts were extremely rare (they
have only occurred two or three times during the
4 months that TranSend has been active). Because
of this long-term smoothness, we were able to allo-
cate a �xed number of cluster nodes to TranSend.
To handle the infrequent long-term bursts of activ-
ity, we designed TranSend to easily recruit \overow
nodes" in times of need.

4.2 Reference Locality

The TranSend service incorporates a large web
cache. We have observed that there is locality in
both the pre- and post- transformed representations
of web content. In our experience, a 6 gigabyte
web cache has been more than su�cient to serve the
needs of the Home IP service, providing close to a
50% hit rate, as predicted by the cache simulations.

4.3 Service Response Times

The two largest components of end-to-end la-
tency perceived by the end users of TranSend are
the time that it takes TranSend to retrieve content
from web services on a cache miss, and the time it
takes TranSend to deliver transformed content to
users over the slow modem lines. The time spent by
TranSend actively transforming content is less than
100 milliseconds, but content retrieval and delivery
latencies often exceed tens of seconds. This means
that at any given time, there are many idle, out-
standing tasks supported by TranSend, and a large
amount of associated idle state.

We engineered TranSend to assign one thread to
each outstanding task. Because of these high la-
tencies, we have observed that there must be on
the order of 400-600 task threads available. A large
amount of the computational resources of TranSend
is spent context switching among these threads. In
retrospect, we concluded that a more e�cient design
approach would have been to use an event-driven
architecture, although we would certainly lose the
ease of implementation associated with the threaded
implementation. Similarly, each task handled by
TranSend consumes two TCP connections and two
associated �le descriptors (one for the incoming con-
nection, and one for the connection within TranSend
to the cache). We did not attempt to measure the

overhead we incurred from this large amount of net-
work state.

5 Related Work

A number of web client tracing e�orts have been
made in the past. One of the earliest was performed
by Boston University [10], in which about a half mil-
lion client requests were captured. These traces are
unique in that the Mosaic browser was exclusively
used by the client population; the Boston University
researchers instrumented the browser source code in
order to capture their traces. This research e�ort
concentrated on analyzing various distributions in
the traces, including document sizes, the popularity
of documents, and the relationship between the two
distributions. They used these measured distribu-
tions to make a number of recommendations to web
cache designers.

Our traces are similar to the Boston University
traces in spirit, although by using a packet snooper
to gather the traces, we did not have to modify client
software. Also, our traces were taken from a much
larger and more active client population (8,000 users
generating more than 24,000,000 requests over a 45
day period, as compared to the Boston University
traces' 591 users generating 500,000 requests over a
6 month period).

In [20], a set of web proxy traces gathered for
all external web requests from Digital Electronics
Corporation (DEC) is presented. These traces were
gathered by modifying DEC's two SQUID proxy
caches. These traces represent over 24,000,000 re-
quests gathered over a 24 day period. No analysis
of these traces is given - only the traces themselves
were made public. Only requests owing through
the SQUID proxy were captured in the traces - all
web requests that owed from DEC to external sites
were captured, but there is a lack of DEC local re-
quests in the traces.

Many papers have been written on the topic of
web server and client trace analysis. In [32], removal
policies for network caches of WWW documents
are explored, based in part on simulations driven
by traces gathered from the Computer Science de-
partment of Virginia Tech. In [9], WWW tra�c
self-similarity is demonstrated and in part explained
through analysis of the Boston University web client
traces. In [25], a series of proxy-cache experiments
are run on a sophisticated proxy-cache simulation
environment called SPA (Squid Proxy Analysis), us-
ing the DEC SQUID proxy traces to drive the sim-
ulation. A collection of proxy-level and packet-level



traces are analyzed and presented in [12] to motivate
a caching model in which updates to documents are
transmitted instead of complete copies of modi�ed
documents. Finally, an empirical model of HTTP
network tra�c and a simulator called INSANE is
developed in [23] based on HTTP packet traces cap-
tured using the tcpdump tool.

6 Conclusions

In this paper, we presented the results of an
extensive, unintrusive client-side HTTP tracing ef-
forts. These traces were gathered from a 10 Mb/s
Ethernet over which tra�c from 600 modems (used
by more than 8,000 UC Berkeley Home IP users)
owed. Forty-�ve days worth of traces were gath-
ered. We used a custom module written on top
of the Internet Protocol Scanning Engine (IPSE)
to perform on-the-y tra�c reconstruction, HTTP
protocol parsing, and trace �le generation. Being
able to do this on the y allowed us to write out
only the information that interested us, giving us
smaller and more manageable trace �les.

We measured and observed a number of interest-
ing properties in our Home IP HTTP traces, from
which we have drawn a number of conclusions re-
lated to Internet middleware service design:

1. Although most web clients can be classi�ed as
accessing Internet services using a PC-based
browsers and desktop machines, there is signi�-
cant heterogeneity in the client population that
Internet middleware services must be prepared
to handle.

2. There is an extremely prominent diurnal cy-
cle a�ecting the rate at which clients access
services. Furthermore, clients' activity is rela-
tively smooth at large time scales (on the order
of tens of minutes, hours, or days), but increas-
ingly bursty at smaller time scales (order of
minutes or seconds). Internet middleware ser-
vices can thus provision their resources based
on the request rate observed over several hours
if they can a�ord to smooth bursts observed
over second-long time scales.

3. There is a very large amount of locality of refer-
ence within clients' requests. The amount of lo-
cality increases with the client population size,
as does the working set of the client popula-
tion. Thus, caches that take advantage of this
locality must grow in size in parallel with the
client population that they service in order to
avoid thrashing.

4. Although Internet services tend to be very reac-
tive, the latency of delivering data to clients is
quite lengthy, implying that there could poten-
tially be many hundreds or thousands of out-
standing, parallel requests being handled by a
middleware service. Services must thus min-
imize the amount of state and switching over-
head associated with these outstanding, mostly
idle tasks.
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