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After an inauspicious debut, communication-enabled personal digital assistants (or
PDA’s) and handheld PC’s are being “rediscovered” as mobile information access
terminals. In response, developers have attempted to bring complex applications such
as Web browsers to such devices. However, the limited resources available on thin
client platforms make them unsuitable for hosting such applications. In this paper,
we advocate moving application complexity from thin clients to an adaptive middle-
ware proxy (AMWP), an infrastructural application server platform designed to sup-
port large populations and diverse applications. We describe one such application,
Top Gun Wingman, a graphical, split Web browser for the Palm Pilot PDA that is
currently in use by more than 11,000 users around the world. Our discussion focuses
on the design philosophy, implementation, performance, and lessons learned from
our experience with the Wingman client and the middleware proxy that supports it.
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1 MOTIVATION

We would like to connect “thin clients” to the Internet, especially convergent mo-
bile devices such as smart phones, while allowing them to leverage at least some
of the installed infrastructure of Web content and services. However, the limited
capabilities of these devices—smaller displays, more limited user interfaces, lower
bandwidth, and limited processing power and memory—complicate direct porting
of desktop applications such as Web browsers. In the past (Fox, Gribble, Chawathe
& Brewer 1996, Fox, Gribble, Brewer & Amir 1996) we have argued for the use
of transformational proxies, which perform on-the-fly, datatype-specific lossy com-
pression, as a mechanism for application-level content adaptation that circumvents
the limitations of thin clients. We have generalized this approach into a full set of
building blocks and programming interfaces for constructing proxy-based applica-
tions that adapt to network and client variability. In this paper we describe our adap-
tive middleware proxy (AMWP) approach in the context of Top Gun Wingman, the
world’s first graphical Web browser for the 3Com PalmPilot.

Existing commercial products such as Microsoft Pocket Internet Explorer for Win-
dows CE and HandWeb for the 3Com PalmPilot attempt to directly port the largest
reasonable subset of features from desktop browsers onto thin clients. In contrast,
Wingman is not a port, but a true split application in which a substantial amount of
the application complexity has been pushed to a back end proxy server. The proxy
server implements a simple building-block programming model called TACC (Fox
1997), which supports application modules that perform Transformation, Aggregation,
Caching, and Customization of Internet content.

We discuss the implementation in detail in Section 2.

1.1 Claims and Contributions

Because we exploit infrastructure computing, Wingman’s performance and feature
set compare very favorably not only with its direct competitors, but with many desk-
top browsers as well. In particular, we make the following claims for the AMWP-
based implementation of the Wingman browser, which we support with specific ex-
amples and later generalize to other thin-client Internet services:

1. The AMWP approach results in better performance than a reduced port or least-
common-denominator, standards-compliant implementation that runs entirely on
the client. We provide evidence for this in Section 2.6.

2. AMWP enables new features and behaviors for the client, many of which would
be awkward or impossible without proxy support. By hosting the complex parts
of the application on the TACC proxy, complex applications can be robustly sup-
ported on very simple clients. For example, the AMWP approach has been used
to bring the MBONE mediaboard application to the Palm Pilot (Chawathe, Fink,
McCanne & Brewer 1998).



3. AMWP transparently leverages more of the existing infrastructure of content
and services, since on-the-fly transparent translation and compression are effec-
tive techniques for delivering acceptable performance between existing servers
and thin or legacy clients. Such thin clients might not otherwise be capable of
handling content and services designed for modern, “common case” clients.

4. AMWP-based services are cost effective to operate and expand because of the
simplicity of the client software, the generality of our building-block approach for
the middleware proxy, and our proven commodity-PC cluster server implementa-
tion (Fox, Gribble, Chawathe, Brewer & Gauthier 1997). Cost efficiency makes
widespread deployment of AMWP-based applications feasible even for very large
(hundreds of thousands of users) communities.

1.2 Map of Paper

In Section 2 we motivate the three-tier client-proxy-server model as a platform for
deploying middleware-based services for mobile and thin clients. We describe our
general approach, give quantitative experience from work leading up to Wingman,
and introduce the TACC programming model that supports Wingman and other ap-
plications. We also give details of the implementation and performance of both the
Wingman client and its cluster-based TACC server back-end (discussed previously in
(Fox, Gribble, Chawathe, Brewer & Gauthier 1997)), and describe how the AMWP
approach enables specific features that make Wingman competitive with both desk-
top browsers and other thin-client browsers. In Section 3, we attempt to draw some
lessons based on our experience in both implementing Wingman (and AMWP ap-
plications in general) and serving a worldwide community of over 11,000 users. We
discuss related and future work in Section 4.

2 ARCHITECTURE AND IMPLEMENTATION

We argue for a proxy-based approach for middleware applications, in which proxy
agents placed between clients and servers perform computation- and storage-intensive
tasks, such as datatype-specific lossy compression, on behalf of clients. Properly ap-
plied, this approach reduces the bandwidth demands on the infrastructure through
lossy compression (Fox & Brewer 1996, Fox, Gribble, Chawathe, Brewer & Gauthier
1997), and allows legacy and other nonstandard (including thin) clients to interoper-
ate with existing servers.

Furthermore, by performing client adaptation at a shared infrastructural proxy, we
avoid inserting adaptation machinery at each origin server. Application partitioning
arguments have long been used to keep clients simple (as in (Watson 1994a)); we
simply split the application between client and proxy, rather than between client and
server. From the client’s perspective, the proxy is simply a server that gets the data
from someplace else.



2.1 TACC: A Programming Model for AMWP Applications

We have evolved a programming model for proxy-based applications called TACC
(Fox 1997, Fox, Gribble, Chawathe, Brewer & Gauthier 1997): transformation (dis-
tillation (Fox, Gribble, Brewer & Amir 1996), filtering, format conversion, etc.),
aggregation (collecting and collating data from various sources, either offline or on-
the-fly), caching (both original and transformed content), and customization (per-
sistent store of user profiles, allowing the service to tailor its output to each user’s
needs or device characteristics). Each TACC worker specializes in a particular task,
for example, scaling/dithering of images in a particular format, conversion between
specific data formats, extracting “landmark” information from specific Web pages,
etc. Complete applications are built by composing workers, by chaining them (in
the Unix pipeline sense), or allowing one worker to call another as a subroutine or
(parallel, asynchronous) coroutine. The dispatch rules that determine which work-
ers are invoked to satisfy a particular user request can either be hardcoded for each
application, or controlled dynamically by the workers themselves. A runtime plat-
form called a TACC server is expected to provide mechanisms for hosting workers,
instantiating dispatch rules, providing high availability, and recovering from errors
such as dispatch loops, infinite mutual recursion, or worker instability; we describe
our prototype TACC server in the next section.

Workers serially process tasks from a task queue; each task corresponds to some
component of satisfying a user request, e.g. scaling and transforming an inline image
on a Web page. Each worker is expected to be atomic and restartable, in order that
the TACC server (a prototype implementation of which we describe below) be able
to exploit a repertoire of availability and scaling mechanisms. There are several ways
in which a worker can achieve this goal, including being completely stateless (as in
Wingman), performing only idempotent operations, or sharing reconstructable group
state via mechanisms such as Scalable Reliable Multicast (SRM) (Floyd, Jacobson,
Liu & McCanne 1995).

Customization is central to TACC: the TACC server is expected to manage per-
sistent user profiles (lists of key/value pairs) that allow workers to provide user-
customized service. The TACC server identifies a user via incoming IP address,
cookies, or some other client-specific identifier, and automatically routes the appro-
priate profile information to the worker(s) that will be used to satisfy the request.
API’s are provided for workers to modify or access profile data directly, and to gen-
erate HTML forms that allow users to edit their profiles without requiring direct
worker involvement.

TACC provides a very general programming model that subsumes transformation
proxies (Fox, Gribble, Chawathe & Brewer 1997), proxy filters (Zenel 1996), cus-
tomized information aggregators, and search engines. The TACC programming en-
vironment, which currently consists of Unix-hosted interface files and build/test har-
nesses, provides the inter-worker and intra-worker API’s, composition rule API’s,
and glue that allows workers to be authored in a variety of languages (currently
C/C++, Perl 5, Java, and Tcl).



2.2 Scalable Cluster-Based TACC Server

A TACC server is a platform that instantiates TACC workers and the dispatch rules
for routing network data traffic to and from them, and provides support for the inter-
worker calling and chaining API’s. Roughly, a TACC server is to TACC workers as
the Unix shell and runtime are to Unix programs. Our decision to use a cluster of
commodity PC’s as the basis for our TACC server implementation, as well as the
design goals for the cluster runtime software, were motivated by several straightfor-
ward observations:

The inherent hardware redundancy of clusters can be harnessed to provide high
system availability.
For “embarrassingly parallel” workloads with favorable computation to com-
munication ratios, fast and inexpensive system-area networks such as switched
100 Mb/s Ethernet or Myrinet (Myricom 1995) allow a cluster to be treated as a
single large computing resource.
Using commodity PC’s as the unit of scaling allows the service to ride the leading
edge of the cost/performance curve as it is incrementally expanded.
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Figure 1 Components of a cluster-based TACC server include front ends (FE),
TACC workers (W) and caches ($), a user profile database, a graphical moni-
tor/administration interface, and a fault-tolerant load manager whose functionality
logically extends into the manager stubs (MS) and worker stubs (WS).

We describe our system architecture at a high level; a detailed description can
be found in (Fox, Gribble, Chawathe, Brewer & Gauthier 1997). The software-
component block diagram of our scalable TACC server is shown in Figure 1. Front



ends receive client requests from the outside world and “shepherd” them through the
system, by fetching Internet content via the caches, matching the request with the
appropriate user profile from the customization database, and queueing the request
for service by one or more TACC workers that will process the data according to the
user preferences. Front ends maximize system throughput by maintaining state for
many simultaneous outstanding requests, and can be replicated for both scalability
and availability. The Load Balancing/Fault Tolerance manager is responsible for in-
ternal reactive load balancing (including exploiting an overflow pool of general-use
machines), autostarting and reaping TACC workers, and detecting and recovering
from various system failures, including crashed components and network partitions,
via multicast heartbeat and process-peer fault tolerance. The entire system is admin-
istered through a Graphical Monitor, which supports asynchronous error notification
via email or pager, temporary disabling of system components for hot upgrades, and
visualization of the system’s behavior using Tcl/Tk (Ousterhout 1994).

Our working prototype of the cluster runtime provides a set of mechanisms (de-
scribed in (Fox, Gribble, Chawathe, Brewer & Gauthier 1997)) to support incre-
mental scaling, internal load balancing, and high availability for TACC applications.
Hiding this machinery behind the TACC API’s keeps TACC applications easy to
write even though they will be deployed to large user communities who will expect
continuous availability (so-called “ operation”). Our cluster has been hosting
Wingman on the Berkeley NOW (Network of Workstations) since October 1997, us-
ing four dedicated SPARCstation-10’s and an overflow pool of up to 100 SPARC
Ultra-1 Enterprise servers, about five of which are in use at any given time.

The availability mechanisms in the cluster runtime have kept the system run-
ning virtually continuously despite a variety of observed failures (worker crashes,
temporary interconnect partitions, and unexpected node reboots, among others), in
addition to the aggressive fault-injection experiments described in (Fox, Gribble,
Chawathe, Brewer & Gauthier 1997). Although (as described in that paper) the clus-
ter’s availability mechanisms cannot completely mask front-end failures, Wingman
masks them using a client-side front-end failover mechanism, similar to Netscape
proxy auto-configuration (Netscape Communications Corporation 1998).

2.3 Wingman as a TACC Application

The 3Com PalmPilot’s austere graphics library supports a single native bitmap for-
mat, and text objects are not automatically word-wrapped and must consist entirely
of text in a single visual style (bold, etc.). The principle of client competence (that
the client should only perform tasks for which it is competent) therefore suggests
that HTML parsing and tag-to-font mapping, page layout with client-specific font
metrics, and image scaling with conversion to native bitmap format all be left to the
TACC proxy. The proxy side of the Wingman browser uses four TACC workers: the

During February 1998, we experienced frequent sporadic downtime, which was ultimately traced to a
configuration change on the cluster that caused remote execution to sometimes break.



image processor, the HTML processor, the zip processor, and the aggregator request
service. The TACC model and API’s allow parallelism to be exploited in various
ways; for example, all inline images are prefetched in parallel with HTML parsing,
and whenever possible multiple images are converted in parallel by calling multiple
workers.

2.3.1 Image and HTML Processors
The image processor reads GIF and JPEG images (the two most common Web
formats (Gribble & Brewer 1997)), converts them to an intermediate bitmap form,
optionally scales, color-quantizes and dithers, and finally outputs the result in either
the PalmPilot’s native image format (Tbmp) or our enhanced 2-bit-per-pixel format.

The HTML processor parses HTML markup, maps HTML tags to supported
font attributes, and generates an intermediate-form page layout. Because the HTML
processor knows the client’s font metrics and display properties, it can wrap text,
flow text around inline images, etc. (A client identification token in the initial client-
to-proxy handshake is used to select the correct client profile. The layout code and
intermediate layout form are client-independent.)

When inline image tags are encountered, the HTML processor fetches the image,
determines how much it should be scaled down using a simple set of heuristics we
developed, and dispatches the original image to an image processor to do the actual
scaling and format conversion. Image processing is done asynchronously and in par-
allel for all images; the HTML parser continues laying out the page in the meantime,
and arranges to rendezvous with the image data before returning to the client a sim-
ple display list of images and text, using a tokenized markup we have developed that
allows the complete page (including all inline images) to be sent as a single object.

2.3.2 Aggregators
An aggregator queries one or more Web sites for specific content and collates and
formats the results for presentation to the client. (The Metacrawler (go2net, Inc.
1997) service on the Web is a recent example of a Web-based aggregator.) Although
Wingman’s aggregator mechanism was originally designed as a substitute for HTML
forms support, aggregators have become our general mechanism for retrieving infor-
mation from multiple content sources and filtering that information to best suit the
needs of the PalmPilot user. The aggregator request service allows access to proxy-
based content-aggregation applications.

In Wingman, an aggregator consists of a very simple PalmPilot-native UI that al-
lows the user to write some text describing what is being requested (e.g. the query
terms for a Web search, the ticker symbol for a stock quote, etc.). When the “OK”
button is tapped, the contents of the form are transmitted to the Wingman TACC
proxy’s aggregation worker. The worker uses the content of the first box to deter-
mine which service the user is requesting (search engine, stock quote, etc.) and the

Roughly speaking, larger images are shrunk more aggressively, imagemaps are shrunk less aggressively
to preserve embedded text, and images are pinned to the screen size of the PalmPilot.



content of the second box as parameters to the aggregator. A site-specific aggregator
handler then converts this data to an HTML form submission on the proxy side, and
the results from the origin server are formatted by the HTML processor. We have de-
ployed aggregators for Yahoo, HotBot, AltaVista, DejaNews, Yahoo’s stock quotes
service, and TripQuest.

2.3.3 Zip, PalmOS, and Doc Support
If the client fetches a Zip file (a popular format for PalmPilot software archives), the
zip processor formats a listing of the archive contents in HTML, such that following
the link for a particular archive member will cause the zip processor to return the se-
lected member. The HTML created by the zip processor is then parsed by the HTML
processor for conversion to our binary markup, just as for normal Web pages. This
mechanism exploits TACC’s ability to easily compose different workers to quickly
create new client abilities.

The proxy passes PalmOS databases (persistent object stores on the PalmPilot)
unmodified, which allows users to use Wingman to install new data and applications
onto their PalmPilots; for example, a proxy-side AportisDoc (Aportis Inc. 1998)
converter module allows users to immediately save the text of a Web page in this
popular e-book format.

2.4 Client Implementation and User Experience

The “look and feel” of the Wingman browser intentionally resembles desktop browsers,
but with specific additions and modifications motivated by the nature of the PalmPi-
lot platform and small device UI’s in general. Like desktop browsers, Wingman has a
hotlist (bookmark) feature, a local user-controllable cache, and an automatic history
cache. Aggregators (described above) are handled by a special aggregator request
window containing a popup menu of all available aggregators and a text area for
entering aggregation specific data, such as a search string.

The refinement interface allows users to zoom in on scaled-down images (Figure
2). Clicking on an image brings up a popup menu that allows the user to view the
original image or follow the link (if applicable). Even for images that have no link
to follow, we chose to have the popup menu appear anyway (with the “follow link”
item disabled) to avoid disorienting the user with different click behaviors for differ-
ent image types. We originally proposed a mechanism of this kind for regular Web
surfing in (Fox & Brewer 1996), but Wingman completely integrates the refinement
interface into the user experience.

2.5 Noteworthy Implementation Details

Following the long-standing recommendations of (Clark & Tennenhouse 1990), com-
plete, ready-to-render pages are delivered as application data units (ADU’s). This
simplifies the client logic considerably: when the network layer delivers a network
event, it means that an entire, self-describing ADU is waiting in a buffer ready to
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Figure 2 Top Gun Wingman screenshots: (a) the Middleware ’98 conference Web
page, (b) the refinement popup menu, and (c) the refined image.

be rendered. Contrast this with traditional HTTP: in that protocol, a network event
merely indicates that some number of bytes has arrived, but framing is left entirely
to the application. Furthermore, in HTTP, inline images are generally fetched using
independent transactions (perhaps in parallel), requiring a nontrivial amount of con-
nection management overhead on the client. Application-level framing eliminates
these concerns, makes the client simpler, and enables a “push-friendly” model of
asynchrony that even allows out-of-order ADU delivery. Although Wingman was
not explicitly designed to support disconnected operation, the ADU-based network
layer has no notion of underlying “connection state”, so it is possible for a page to
be split into ADU’s whose arrival is separated by complete (but temporary) network
disconnection. This behavior makes it possible to retarget a Wingman-like applica-
tion for connectionless datagram networks, such as the paging network. We return to
these ideas in Section 3.

2.6 Performance

We measured the relative performance of Top Gun Wingman and its competitors
over the same bandwidth connection: Netscape Navigator for Windows 95, and two
PalmPilot-specific Web browsers, HandWeb and Palmscape. Note that of the three
PalmPilot browsers tested, only Wingman supports display of images. As we show
below, even with this significant additional functionality, Wingman’s performance is
still often superior because of its split design.

We measured the average end-to-end latency (elapsed time between clicking on



a link and completion of loading the page) for each of a collection of 15 different
Web pages chosen to represent the various types of pages on the Web today; we
selected pages with varying but representative page sizes, quantity of inline images,
content, and location. The pages were initially fetched into the proxy’s local cache,
to eliminate the highly-variable Internet latencies from the measurements.

Our Internet gateway is a Pentium 133/64MB running Red Hat Linux 5.0 and con-
nected to the Internet via a 128Kb/s ISDN connection to UC Berkeley. To simulate a
variety of connection speeds, the PalmPilot browsers were connected to the gateway
machine via PPP over an RS-232 serial link. By varying the serial port speed between
57600 and 19200, we simulated low speed connections with slightly lower latency
than a typical modem (120ms). 19200 bps is representative of current wide-area
and metropolitan-area wireless networks, including Metricom Ricochet (Metricom
Corp. 1998), CDPD, and PCS. We believe that such technologies are of particular
interest to the mobile professionals who currently comprise a large market segment
for devices such as the PalmPilot. 57600 was chosen to represent fast wireline (56K)
modems as well as a variety of emerging metropolitan-area picocell wireless data
services.

2.6.1 Comparison to Other PalmPilot Browsers
Despite the fact that Wingman is a graphical browser while Palmscape is a text only
browser, Wingman was still faster than Palmscape in 93% of the sites tested, not
including those sites that caused Palmscape to crash (see below). At 19200 bps,
Wingman was at least twice as fast as Palmscape 43% of the time. At 57600 bps, as
the time to display a page becomes more CPU bound, this number rises to 54%. The
PalmPilot’s slow 16 MHz Motorola DragonBall 68328 CPU and limited memory
make HTML parsing and layout painfully slow; Wingman relies on the cluster-based
proxy for HTML parsing and layout.

In 10% of the test cases, Palmscape crashed while loading the page. We suspect
the crashes occur because of the intricate HTML constructs often found on commer-
cial sites; stably capturing all HTML corner cases is difficult, and unlike our TACC
server, the PalmPilot client cannot gracefully shield the user from such failures. In
this sense, our proxy makes Wingman a more stable and reliable application than its
peers.

2.6.2 Comparison to Desktop Browsers
Compared to Netscape running on a Pentium II 300/128MB, Wingman was still
faster at downloading and displaying pages in 77% of the test cases. In this situation
the latency savings come from the image processor reducing images’ resolution and
color depth of image before transmission over a slow link (we demonstrated this sav-
ings originally in (Fox & Brewer 1996)). Although Netscape receives and displays
more data, that excess data is useless to a device with limited display resolution and
depth, such as the PalmPilot. At 57600 bps Wingman is at least two times faster than
Netscape 33% of the time, and at 19200 bps this number increases to 73%. This re-



Figure 3 Comparison of end-to-end latency among Wingman, Palmscape, and
HandWeb at 57600 bps.

sult reinforces our original hypothesis that a proxy system for thin clients is useful
even when the client CPU’s are fast enough to display and parse complex pages.

Figure 4 compares Wingman and Netscape Navigator at 19200 and 57600 bps
for a number of different Web pages. The top number above each pair of bars is
the total number of bytes transferred from the TACC proxy to the Wingman client,
i.e. the size of the Wingman ADU corresponding to the delivered page with all in-
line images. The bottom number is the number of bytes transferred from the origin
server to the Netscape client, i.e. the total size of the HTML, all inline images, and
HTTP header overhead. The relatively small differences in Wingman’s performance
at 19200 and 57600 bps suggest that back-end processing dominates latency, whereas
with Netscape the network bandwidth dominates latency.

Wingman’s HTML processor was written in Perl for fast prototyping and to exploit
Perl’s superior regular-expression and string manipulation facilities. We conserva-
tively estimate that a factor of five to ten in performance would result from rewriting
the HTML processor in a faster language (C/C++); this estimate is compatible with
past work comparing the performance of interpreted, compiled, and byte-compiled
languages (Romer, Lee, Voelker, Wolman, Wong, Baer, Bershad & Levy 1996). This
would make Wingman the fastest browser in virtually all the test cases, even con-
sidering image processing latency, leaving only the link bandwidth as the limiting
factor in performance.

3 LESSONS AND EXPERIENCE

Top Gun Wingman has been deployed and in use by the general Internet population
since October of 1997. Since then, we have processed tens of millions of requests



Figure 4 End-to-end latency: Wingman vs. Netscape Navigator at 19200 and 57600
bps for a selection Web pages.

from over 11,000 users. In this section we share the insights into design, implemen-
tation, and operational issues that we have gained from running such a well-used
middleware service.

3.1 Moving Complexity to the Proxy

A graphical Web browser is a complex application. The Web consists of many intri-
cate and verbose data formats, hastily designed protocols, and pervasive malformed
HTML and image formats that the browser must robustly handle. Even page lay-
out is difficult, given the complex elements such as nested tables, frames, and forms
that exist in modern HTML. Implementing a browser is daunting even on a desk-
top platform with strong operating system support and abundant computation and
storage; porting one to a device such as the PalmPilot is difficult to imagine. With
only 1-2MB of SRAM, such a device can’t even hold all the code. The small heap
size (32KB), limited code segment size (32KB relative jump maximum), and lack of
native OS support for shared libraries further complicate development.

However, all that the PalmPilot really needs to do is render primitive data types
such as images, formatted text, and links. By offloading all of the complex Web
browsing functionality (such as HTML parsing, GIF decompression, JPEG render-
ing, HTTP processing, etc.) to our middleware proxy, we have successfully avoided
dealing with all of the PDA resource limitations. Our resulting implementation ef-

At its peak, the service was processing several requests per second, and was seeing requests from more
than a thousand unique IP addresses per day. We estimate that there have been more than 11,000 down-
loads of the Wingman client software to date.



forts were concentrated on the Unix TACC server implementation, which was rapid
and robust because of the rich and mature Unix development environment.

The partitioning of complexity away from the client has had a number of powerful
benefits:

Client independent back end: The implementation of the Wingman back end is
structured as a pipeline of transformations, only the last of which makes any as-
sumptions about client-specific data formats. This means that porting Wingman to
a new PDA platform requires two development efforts: writing the rendering shell
on the PDA itself, and creating a new final back end pipeline stage corresponding
to that shell. We have made the job of application porting simpler through a well
designed application partitioning.
Transparent functionality upgrades: Because most of the complex components
of the Wingman implementation reside in the proxy back end rather than the
client, it became possible for us to extend the browser’s functionality without
changing any of the code running at the client. The first example of this was
when we improved the graphics transformer (Haeberli 1997) that converts GIF
and JPEG images into PalmPilot images (and which also performs lossy com-
pression through resolution and color depth reduction). The improved converter
performs edge enhancement, giving users the impression of greater contrast and
better image clarity. By simply dropping the new transformer into our proxy, every
Wingman user instantly began seeing improved quality images. The zip archive
processor and AportisDoc processor are further examples of this mechanism: we
have been able to extend the browser to understand new data types without mod-
ifying the client implementation. We can extend this strategy in the future to sup-
port new technologies such as XML, again without browser changes.
Backward compatibility: During our initial deployment, we rapidly released
new versions of the client-side implementation containing bug fixes, UI enhance-
ments, and new features such as a client-side cache and imagemap support. The
proxy uses the client version number (embedded in the initial handshake from the
client) to determine what objects the client can handle. For example, this mech-
anism ensures that image maps are only sent to clients whose version number
indicates they are capable of handling this feature. The mechanism is similar in
spirit to HTTP feature negotiation, but the version-to-feature binding is done late
(at the proxy) and can be easily changed. By putting this capability in our mid-
dleware, we shielded end servers from having to deal with this additional client
heterogeneity.

3.2 Middleware Availablility

As any designer of highly available services will attest, the devil is often in the im-
plementation details. In our AMWP architecture, it is the responsibility of the TACC
server to provide availability and robustness mechanisms that are independent of any



worker; the mechanisms employed in our cluster-based TACC server give rise to the
requirement that each TACC worker be restartable and atomic (alluded to in section
2.1). We have found that despite this programming restriction, the orthogonal separa-
tion of availability/robustness from worker code has made the overall system simpler
to engineer and more robust, and allows new workers to be prototyped more quickly
since they inherit these behaviors for free.

The 11,000 real users stressing our proxy implementation revealed a number of
interesting corner cases in the TACC server design and Wingman implementation
that caused service delays and even interruptions. For example, our initial design of
the Wingman transformation pipeline included a “dispatch” worker that would route
data to subordinates based on the type of the data it receives (HTML, Zip files, etc.),
and then block until the subordinate(s) finished. The long blocking latency made it
appear to the TACC server that the dispatcher worker was overloaded, causing more
of them to be spawned until there was almost one dispatcher per outstanding out-
standing user request. This resulted in hundreds of processes being spawned across
our cluster, filling the cluster nodes’ process tables and causing the service to become
unavailable.

Except for failures due to such rare but interesting cases, all Wingman outages
have been due to factors beyond our control, such as disrupted service from our
campus ISP and power failures that weren’t caught by the departmental UPS.

4 RELATED AND FUTURE WORK

Middleware services such as filtering and on-the-fly compression have become par-
ticularly popular for HTTP (Internet Engineering Task Force 1997), whose proxy
mechanism was originally intended for users behind security firewalls. The mech-
anism has been used to shield clients from the effects of poor (especially wire-
less) networks (Fox & Brewer 1996, Liljeberg, M., et al. 1996), perform filtering
(Zenel 1996) and anonymization, and perform value-added transformations on con-
tent, including Kanji transcoding (Sato 1994), Kanji-to-GIF conversion (Yee 1995),
application-level stream transducers (Brooks, Mazer, Meeks & Miller 1995), and
personalized agent services for Web browsing (Barrett, Maglio & Kellem 1995). In-
frastructure proxies have also been used as a mechanism for application partitioning,
as in the Wit project (Watson 1994a, Watson 1994b) which focuses on partitioning
between the mobile and fixed infrastructure. The Video Gateway (Amir, McCanne &
Zhang 1995) is an example of an infrastructure proxy that performs application-level
adaptation and serves as a multicast to unicast protocol gateway.

Application design and implementation on PDA or smartphone class devices has
recently generated significant research effort. In (Fox, Gribble, Chawathe, Polito,
Ling, Huang & Brewer 1997, Fox & Brewer 1996, Shimada, Iwami & Tomokane
1997), the user interface issues associated with introducing proxy controls as an
orthogonal extension to a Web browser interface are explored. (Schilit & Bickmore
1997) describes an intelligent proxy that attempts to classify HTML pages into a



fixed number of bins, and performs semantic compression and layout modification
based on the chosen bin to repurpose the page for a PDA.

Our TACC middleware has actually been used to implement a variety of distinct
applications besides Wingman. TranSend (Fox, Gribble, Chawathe & Brewer 1997)
is a Web acceleration proxy that performs on-the-fly, datatype-specific compression,
in particular on GIF and JPEG images; it has been available to the public since April
1997 and some of its main ideas have been instantiated commercially as Intel Quick-
Web. Top Gun Mediaboard is an electronic shared whiteboard (a derivation of the
desktop mediaboard (Chawathe et al. 1998) application) for the PalmPilot, in which
TACC workers perform protocol adaptation as well as data transformation; it is in
prealpha use at UC Berkeley, and performs satisfactorily even over slow links such
as the Metricom Ricochet wireless packet radio modem (Metricom Corp. 1998). Top
Gun Mediaboard extends Wingman’s markup and protocol to accommodate the draw
operations and user interactions required by a shared whiteboard.

The commercial ProxiWeb client (ProxiNet, Inc. 1998) adds proxy-based imple-
mentations of features missing from Wingman, including secure connections, cook-
ies, and HTML forms. Future research includes merging Top Gun Wingman and Top
Gun Mediaboard, resulting in a “generic thin client” application that acts as the draw-
ing, rendering, and interaction shell for proxied applications such as MBONE ac-
cess, Web access, or an environment-aware interaction device (Hodes, Katz, Servan-
Schreiber & Rowe 1997). We will also further explore the security and privacy impli-
cations of middleware in general (in comparison to end-to-end security) and Wing-
man in particular, attempting to apply some ideas from our earlier work on security
protocol adaptation for thin clients (Fox & Gribble 1996).

5 CONCLUSIONS

This paper described the proxy-based architecture and implementation of Top Gun
Wingman, the first graphical Web browser for the PalmPilot PDA. We described
our middleware philosophy, which we refer to as the Adaptive Middleware Proxy
(AMWP) approach: let the client do only what it does well (client competence),
and push all other functions to a transparent infrastructure proxy. The proxy side of
Wingman was described in terms of our TACC (transformation, aggregation, cus-
tomization, caching) programming model for interactive Internet services, and dis-
cussed our experience with a publicly-available cluster-based TACC server that has
been operational since late 1997 with virtually no unscheduled downtime.

Our experience with Wingman, as well as with the other TACC applications we
briefly described, supports our claims for the Adaptive Middleware Proxy (AMWP)
approach. Wingman has better performance than a reduced client-only port, has new
features and behaviors (such as browsing software archives and saving e-books, in
the case of Wingman), and has the ability to almost completely leverage the entire

There is no formal connection between QuickWeb and TranSend.



existing Web-based content and services infrastructure. Our proxy implementation
has low administration cost (due to our commodity-PC cluster design and graphical
administration interface) that makes it realistic to operate services on a basis
for large user communities, and the ability to add features at the proxy largely elimi-
nates the client software distribution problem and preserves backward compatibility
when client upgrades do occur.

In addition, our experience with a user community of over 11,000 suggests that
users will have no problem accepting middleware as a pervasive element of Internet
services. For these reasons, and because Wingman demonstrates key technologies
needed to rapidly deploy specialized information-delivery services for thin clients,
we believe that the principles successfully demonstrated by Top Gun Wingman will
play a prominent role in the coming wave of applications for convergent thin client
devices.
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