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ABSTRACT
Internet worms cause billions of dollars in damage each year.
To combat them, researchers have been exploring global
worm detection systems to spot a new random scanning
worm outbreak quickly. These systems passively listen for
worm probes on unused IP addresses, looking for anomalous
increases in probe traffic to distinguish the emergence of a
new worm from background Internet noise.

In this paper, we use analytic modeling, simulation, and
measurement to understand how background noise impacts
the detection ability of global scanning worm detectors. We
investigate the relationship between the average background
noise level, the number of IP addresses monitored, and the
detection latency for two classes of global scanning worm de-
tectors: scan packet-based and victims-based schemes. Our
results show how worm detection latency degrades as a func-
tion of the background noise level. To compensate, global
scanning worm detectors can increase the number of IP ad-
dresses that they monitor. However, given the growth trend
of background noise levels, the number of IP addresses which
must be monitored may quickly become unreasonable. Be-
cause of this, we conclude that global scanning worm de-
tection schemes are unlikely to be competitive with local
scanning and signature-based worm detection schemes.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software

; I.6.4 [Simulation and Modeling]: Model Validation
and Analysis

General Terms
Security Measurement Theory

Keywords
computer security, computer worms, scanning worms, worm
detection, worm models
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1. INTRODUCTION
Researchers have been designing systems to detect new

random scanning worms before they affect a large number
of victims [1, 3, 7, 9, 12, 17, 18, 19, 24, 25]. These global
scanning worm detectors exploit two properties of worms.
First, because worms emit randomly directed probes to find
victims, their probes can be detected by monitoring un-
used IP addresses. Second, because a worm outbreak grows
quickly and in a mathematically predictable fashion [8, 25],
the difference between background scan traffic from non-
worm sources [16] and worm probes can be distinguished
over time. By monitoring a block of unused IP addresses
and looking for statistically significant trends in aggregate
probe rates, a worm detector can spot the worm “signal”
through the background noise and raise an alarm.

Internet background noise consists of packets sent to ports
on IP addresses where no network service exists to handle
them. These noise packets are abundant in today’s Internet
and are generated by network scanners, DoS bots, lingering
worms, or incorrectly configured systems [16]. While the
issue of background noise has been acknowledged in previous
work, there has not yet been a deep analysis of how noise
impacts the effectiveness of scanning worm detectors. For
example, one might naturally assume that a detector that
monitors more unused IP addresses would be able to detect a
worm epidemic sooner. However, the number of noise probes
observed by a detector increases as more IP addresses are
monitored, potentially confounding detection.

In this paper, we use a combination of analytic model-
ing, simulation, and measurement to understand the rela-
tionship between background noise and scanning worm de-
tection fidelity. We examine two global scanning worm de-
tection schemes: scan packet-based detectors that look for
anomalous increases in the aggregate arrival rate of probes,
and victims-based detectors that look for an anomalous in-
crease in the rate at which new probe sources (i.e., victims)
are observed. For each technique, we describe and validate
an analytic model of background noise traffic, we simulate
the propagation of a worm in the presence of varying noise
levels, and we analyze and explain the success or failure of
the worm detector to raise an alarm early in the worm’s life
cycle. Our results demonstrate that:

• For both scan packet-based and victims-based detec-
tion schemes, larger background noise levels degrade
the expected detection latency. Given that background
noise levels are trending upwards over time, we expect
that scanning worm detectors will grow less capable in
the future, unless they monitor more IP addresses.



• For both detection schemes, increasing the number of
monitored IP addresses improves the detection latency.
Monitoring more IP addresses decreases the observed
variation in the noise probe arrival rate, allowing a
detector to use a tighter alarm threshold.

• Unfortunately, as the average noise rate grows larger,
the number of additional IP addresses that must be
monitored quickly becomes unreasonable.

These results strongly suggest that global scanning worm
detection systems will have limited utility in the future, as-
suming the background noise signal continues to grow. For-
tunately, alternative classes of detection systems are now
being explored. Signature-based detectors examine probe
payloads for content strings that occur repeatedly and which
originate from a large number of sources [19, 12]; because
signature-based schemes do not attempt to track the growth
rate or size of a worm, they are much more robust against
noise. Local scanning worm detectors attempt to monitor
hosts within a network to detect when they transition from
emitting benign traffic to emitting scanning, worm-like traf-
fic [17, 18, 9]. Accordingly, we believe that worm detec-
tion systems of the future should be based on local scan-
ning algorithms or signature-based schemes. These schemes
are not prone to false positives from background noise, and
they have the potential to detect and block any scanning
pathogen, whether or not it is a self-propagating worm.

The rest of this paper is organized as follows. Section 2 de-
scribes related work on worm detection. Section 3 presents
an analytical framework for scan packet-based worm detec-
tors in the presence of noise. Section 4 presents an analyti-
cal framework for victims-based detectors in the presence of
noise. Finally, we conclude the paper in Section 5.

2. RELATED WORK
The propagation and abatement of Internet worms have

similar mathematical properties as biological epidemics. Sev-
eral researchers have taken advantage of this similarity to
construct models that describe the spread of Internet worms
over time. Zou et al. applied classical stochastic epidemic
models to model the spread of the Code Red worm [26].
Their model considered how Code Red’s probe rate slowed
over time as networks grew clogged and countermeasures
were deployed. In follow-on work, they described how the
propagation of a worm could be retarded if a detection sys-
tem quarantined activity on ports for which scan traffic was
observed [27]. However, their analysis did not consider the
issue of false positives caused by background noise traffic.

Chen et al. proposed a stochastic worm propagation model,
compared its predictive power to classic epidemic models,
and analyzed a simple scan packet-based detector [5]. While
elements of their analysis are similar to ours, they did not
consider how background noise affects worm detection.

By fusing analytic worm propagation models with a lo-
calized model of network topologies, Liljenstam et al. gen-
erated realistic synthetic worm traffic and examined its ef-
fect on network performance [13]. Additionally, they in-
vestigated the effectiveness of the DIB:S/TRAFEN worm
detection system [4] assuming a simple Poisson background
noise process. However, they did not investigate how or if
the addition of noise in their analysis affects the worm de-
tector’s results.

2.1 Analysis of Real Worms
Several researchers have reverse engineered worms or gath-

ered measurement data during the propagation of a worm
outbreak. An early example was the deconstruction of the
original Morris worm [20], though no measurement results
were described. Moore et al. performed a detailed measure-
ment analysis of the Code Red worm incident, providing in-
sight into its probe rate and propagation over time [15]. A
similar study was performed of the Sapphire/Slammer worm
incident, showing how it propagated to 90% of vulnerable
hosts within 10 minutes [14]. Kienzle and Elder provide a
recent survey of worms and their trends [11].

In many ways, real worms have näıve designs. Researchers
have proposed strategies by which a worm could propagate
more quickly, including taking advantage of knowledge of
routing topologies [28], or constructing hit-list, permutation
scanning, or flash worms [21].

2.2 Worm Detection Systems
In an early proposal for a global scanning worm detector,

Bakos and Berk described a system which monitors ICMP
destination unreachable packets, looking for the “exponen-
tial bloom” that signifies the rapid global growth of self-
propagating code [1]. This study did not consider the effect
of background noise, and it did not quantify detection la-
tency or false positive rates. Zou et al. proposed a detec-
tion system that fits observations of probe traffic to an epi-
demic model, using Kalman filtering to estimate the rate at
which an average worm victim successfully infects additional
victims [25]. They observed that increasing the number of
monitored IP addresses decreases the error in the estimated
number of infected hosts. They acknowledged that back-
ground noise affects detection, but provided no analysis of
the magnitude of its effect.

The closest work to ours is that of Wu et al. [24], which de-
scribed scan packet-based and victims-based scanning worm
detectors and quantified their effectiveness. While they cor-
rectly argued that victims-based detectors are less prone to
false positives from background noise, they provided no anal-
ysis to explain why, nor did they provide data relating noise
rates to detection probabilities. Similarly, while they ar-
gued that monitoring more IP addresses improves detection
latency, they did not analyze why.

Barford et al. [2] is the only work that provides a similar
analysis of the effects of noise on worm detectors. However,
their analysis is at a very high-level, using a number of math-
ematical approximations to put rough bounds on detection
probabilities and false positive rates. In contrast, our anal-
ysis and noise models are specifically tailored to understand
the differences between scan packet-based and victims-based
detectors. We also parameterize our noise models and worm
growth models using data collected from real Internet mea-
surements and actual worm epidemics.

Qin et al. used traces gathered on 25,600 unused IP ad-
dresses to evaluate the effectiveness of several worm detec-
tion schemes on real traffic [17]. Similar to us, they advo-
cated that local detection may be more effective than global
detection: once a local host is observed to exhibit worm-
like behavior, one can immediately assert that a worm has
been detected. They propose a HoneyPot-based scheme for
detecting local worm-like behavior [7].

Schecter et al. considered the problem of detecting that
a local host is maliciously scanning rather than trying to



forge benign connections [18]. Once classified as a scanner,
a host can be quarantined or rate-limited. Gu et al. accom-
plished a similar goal with a different technique: if a host
that received a packet on a certain port emits traffic on that
port at an anomalous rate, it is likely infected by a worm [9].
Jung et al. [10] developed an effective online algorithm called
Threshold Random Walk (TRW) based on sequential hy-
pothesis testing for detecting scanners with very few (4-5)
connection attempts. Weaver et al. [22] used a refined ver-
sion of the TRW algorithm as the basis for scanning worm
detectors. While their algorithm inherently relies on finding
deviations from benign or noisy traffic patterns, their anal-
ysis does not explain how the properties of the noise affects
their results.

Fundamental to the effectiveness of all scanning worm de-
tectors is the selection of the set of unused IP addresses to
monitor for malicious activity. Cooke et al. [6] investigated
how and why different sets of unused IP addresses observe
differing and localized Internet traffic patterns. Their work
shows how certain sensor properties affect the sensor’s ob-
servations, suggesting that these outside influences must be
taken into account when generalizing Internet traffic trends
and anomalies to the entire address space. Our analysis
does not take into account these global variations in traffic
patterns. For the sake of clarity and simplicity, we assume
that noise and worm traffic is distributed uniformly across
IP address space.

Instead of looking for worm-like traffic patterns, signature-
based systems instead attempt to generate content-based
signatures of worm pathogens which can then be used to
block their spread. Signature-based systems (such as Early-
bird [19] and Autograph [12]) borrow local scanning tech-
niques to identify suspicious traffic, but they then “sift”
through the payload of this traffic to identify commonly re-
occurring signatures. The signature-based system proposed
by Whyte et al. [23] uses DNS anomalies to detect scanning
worms. The idea is that while legitimate human users tend
to use alphanumeric strings and DNS to contact hosts, scan-
ning worms typically use numeric IP addresses to find new
victims. This technique of looking for non-DNS-based con-
nections can be a good behavioral signature for detecting
worms.

By looking for signatures that occur often and that ar-
rive from multiple sources, these signature-based schemes
can identify and block both self-propagating and non-self-
propagating pathogens. Moreover, the signatures generated
can be used to filter out false positives arising from benign
or previously known malicious traffic, making background
noise a non-issue.

3. AN ANALYSIS OF SCAN PACKET-
BASED WORM DETECTORS

In this section of the paper, we analyze the effective-
ness of scan packet-based worm detectors in the presence
of background noise. After providing an overview of how
scan packet-based detectors work, we describe and validate
an analytic model for background noise. Using this model,
we derive the expected distribution of noise packets that
arrive at a monitored IP address. Next, we use the well-
known random constant spread (RCS) model to derive the
expected distribution of worm scan packets that arrive at a
monitored IP address. By fusing these two models together,

we analyze the behavior of a scan packet-based detector by
calculating the probability that it will detect the worm over
time. Because our analysis is model driven, we can easily
vary parameters such as the mean level of noise in the In-
ternet and the number of IP addresses the detector is moni-
toring, observing their effect on the probability of raising an
alarm.

Our goal in this section is to answer three questions: (1)
What is the tradeoff between detection fidelity and false
positive rate? (2) How is detection fidelity affected by the
Internet’s background noise level? (3) How is detection fi-
delity affected by the number of IP addresses monitored by
the detector?

3.1 System Architecture
A scan-packet detector passively monitors a set of unused

IP addresses, keeping track of the rate at which packets ar-
rive. Abstractly, we consider each observed IP address to be
a separate monitor, even if all are routed to a single host. For
random scanning worms, it does not matter whether these
unused IP addresses are distributed across the IP address
space or clustered within a contiguous block. Our analysis
assumes the set of monitors provide uniform, random sam-
pling of the global noise and worm traffic.

Each monitor receives two types of packets: worm scan
packets and noise packets. Worm scan packets are those
generated by machines infected with a worm. Noise pack-
ets are packets generated by non-worm sources such as a
DoS bot or an incorrectly addressed but valid TCP connec-
tion establishment request. Unfortunately, a monitor can-
not distinguish between worm and noise packets a priori.
Instead, the detector relies on observing an increase in the
overall scan packet rate to determine that a worm is present
and growing. Formally, a detection system with k monitors
raises an alarm at time t whenever the total scan packet ar-
rival rate observedsp(k, t) is greater than an alarm threshold
θ, where the total packet arrival rate includes both worm
and noise packets: observedsp(k, t) > θ.

The rationale behind this detection condition is that since
worms grow rapidly, the rate of generated worm scan packets
will also grow rapidly. Monitors can detect this growth by
looking for an anomalous increase in the observed packet ar-
rival rate above the alarm threshold. However, natural and
random fluctuations in the observed noise rate are likely to
occasionally exceed θ, causing the system to raise an alarm
even when no worm attack is in progress. To minimize the
probability of a false alarm, an alarm should only be raised
when observedsp(k, t) is greater than the range of likely vari-
ations in the noise by a statistically significant amount.

3.2 Modeling Noise
While previous work has shown that different areas of the

Internet experience differing local traffic patterns [6], for this
paper we ignore any intrinsic global noise variations, and in-
stead assume that each IP address observes a noise arrival
process drawn from the same, global distribution. Using this
assumption, we ran a simple experiment to understand the
basic nature of Internet background noise in which we mon-
itored a single unused IP address over the course of 25 days,
and counted the number of TCP SYN packets that arrived
during each hour of this time period. We observed a distri-
bution of arrival rates, with a mean of 42 packets arriving
each hour and a standard deviation of 57 (Figure 1a).
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Figure 1: (a) Measured distribution of the number of noise packets that arrived per hour at a single, unused IP

address. (b) A hypothetical distribution of the noise rate observed by a detection system that monitors k IP addresses.

The alarm condition threshold θ is shown at c ∗ σnoise,k above the mean noise rate µnoise,k.

We need to adopt a model for Internet noise that results in
a similar variable arrival rate distribution at each monitor.
As a starting point, we present a very simple model in which
noise packets are emitted at a constant aggregate rate φ
per time step, but each is sent to a randomly selected IP
address within the Internet. This model represents each
noise packet as a Bernoulli trial, where the probability that
a single monitor will observe a noise packet is 1/232.

For a system with k monitors, the probability that a noise
packet will be detected is pk = k

232 . For a given time step, we
can represent the number of the noise packets that are de-
tected as a random variable N . This variable has a binomial
distribution with a mean µnoise,k and variance (σnoise,k)2:

µnoise,k = φ ∗ pk =
φ ∗ k
232

, (1)

(σnoise,k)2 = φ ∗ pk ∗ (1− pk), (2)

= µnoise,k ∗ (1− k

232
).

Projecting back from the data in Figure 1a, under this
model the aggregate rate θ at which noise packets are in-
jected into the Internet is approximately 50.1 million packets
per second! We can also arrive at a similar estimate based on
data within a study of Internet background radiation [16].
Based on the data in Figure 6 within that paper, the esti-
mated aggregate Internet noise rate is 46.6 million packets
per second, which is remarkably close to the estimate from
our data.

Note that the mean noise packet arrival rate grows linearly
with both the number of monitored IP addresses k and the
aggregate noise injection rate φ. The standard deviation
grows with the aggregate noise rate, but decreases as more
IP addresses are monitored. Overall, as the noise level on
the Internet increases, the worm detector will see a wider
noise distribution as well a higher mean noise arrival rate.

3.2.1 The Detection Condition
Given our noise model, we are now in a position to define

the detection system alarm threshold θ. We want the sys-
tem to raise an alarm when the observed scan packet arrival
rate is higher than the mean noise arrival rate, but to a large
enough degree that we can be statistically confident that it
is not due to variations in the noise. To accomplish this,
we define θ as some number of standard deviations c above

the mean noise rate: θ = µnoise,k + c ∗ σnoise,k. The param-
eter c corresponds to the confidence level that an alarm is
the result of increased worm traffic and not a random noise
fluctuation; increasing c increases this confidence level. This
detection condition is depicted graphically in Figure 1b.

An increase in the aggregate Internet noise rate φ raises
the alarm condition θ for two reasons: the observed noise
arrival rate grows, as does the width of the observed noise
distribution. As the Internet background noise grows louder,
the alarm threshold becomes harder to reach.

3.3 Modeling a Worm
To model worms, we adopt the well-known and widely

used random constant spread (RCS) model, whose accuracy
has been demonstrated for worm outbreaks such as Code
Red v2 and Slammer [14, 15]. The RCS model assumes that
each infected host randomly scans the IP address space to
find new victim machines. The RCS model is a classic logis-
tic curve that represents the way in which random-scanning
worms initially spread at an exponential rate, but eventually
slow down as the susceptible population becomes saturated
with the pathogen.

Admittedly, the RCS model does not capture the specific
dynamics of how saturation occurs, nor does it model other
precise effects such as Slammer’s diminishing scan rate over
time [14]. The RCS model instead captures how all ef-
fective worms experience a period of exponential growth.
Any practical worm detection system that hopes to stop the
spread of an active worm must be able to detect the worm as
early as possible in this exponential growth phase, otherwise
detection is useless because the worm will have already in-
fected far too many victims. Since beneficial worm detectors
operate in this exponential growth phase, other secondary
dynamics, especially at the end of a worm’s life-cyle, have
little impact on a detector’s effectiveness. The RCS model
removes these second-order effects to provide a clear and
simple model that captures the most important aspects of
a worm’s growth behavior from the viewpoint of a worm
detector.

Under the RCS model, the number of infected hosts I(t) at
time t after the worm is released is very closely approximated
by the exponential function I(t) = at, for some constant
a, up until the population saturates. As an example, an
analysis of the Code Red v2 epidemic of July 2001 estimated



that I(t) = 10.84t, where t is measured in hours [15]. If we
assume that an infected host transmits s probes per unit
time to random destinations, then at time t the overall worm
probe rate ψ(t) is modeled by ψ(t) = s ∗ I(t) = s ∗ at.

Much like our noise model, each worm scan packet can be
considered to be a Bernoulli trial, where success means that
the worm scan packet is observed by our detector. Given
this, at a given time t, the number of worm packets ob-
served by a detector monitoring k IP addresses is a binomial
random variable W (t), with a mean and standard deviation
given by:

µworm,k(t) =
ψ(t) ∗ k

232
, (3)

(σworm,k(t))2 = µworm,k(t) ∗ (1− k

232
). (4)

As time progresses, the mean arrival rate of worm probes
at the detector grows exponentially. Much like with the
noise processes, the arrival rate distribution widens as the
arrival rate grows.

3.4 Modeling the Worm Detector
We now have all of the pieces in place that we need to

understand how a scan packet-based worm detector will be-
have in the presence of noise. The total observed scan packet
arrival rate at a worm detector at time t is described by
the sum of the noise packet arrival rate N and the worm
packet arrival rate W (t). Thus, at time t, observedsp(k, t)
= N + W (t). Because N and W (t) are binomial vari-
ables whose means and standard deviations are known, so
is observedsp(k, t).

We are now ready to tackle the problem of calculating the
probability that the detector raises an alarm at a particu-
lar time t. Given our detection condition θ = µnoise,k +
c ∗ σnoise,k, the system will raise an alarm at time step t if
observedsp(k, t) > θ. Given this, the probability that the
worm detector raises an alarm at time step t is just the
expression Pr[observedsp(k, t) > θ]. Since we have closed-
form solutions for observedsp(k, t) and θ, we can calculate
this probability for any given number of monitored IP ad-
dresses k, any given aggregate noise packet generation rate
φ, and any given detection threshold c.

We now derive the key equation that we use for the rest
of our analysis. This equation calculates the worm detector
fidelity, which we define as the probability Probdetect(t) that
the detector raises an alarm by time step t. Assuming that
time step t = 0 is the point at which the first machine in the
Internet becomes infected by the worm, Probdetect(t) gives
us the probability that a system detects this worm by time
t in its growth. Thus, the worm detector fidelity can be
calculated as:

Probdetect(t) = 1 −
tY

i=0

(1− Pr[observedsp(k, i) > θ]) (5)

In the rest of this section, we will vary k, φ, and c, and
use equation 5 to examine how the probability of detection
is affected by each of these parameters.

3.5 Quantitative Results
Given our analytical model, we can now return to our

three basic questions about scan packet-based worm detec-
tors. To answer them, we use measurements of the Code Red
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Figure 3: False alarm vs. worm detection probabilities.

This figure illustrates the trade-off between the probabil-

ity of raising a false alarm and the probability of detect-

ing the worm by its critical time, for alarm conditions at

various different numbers of standard deviations c above

the mean noise level. The system considered had k = 218

monitors, and the noise φ was fixed at φ = 1.5 billion

packets per minute.

v2 worm [15] to parameterize our worm model. Then, we
use our worm detector model to explore the effect of varying
the background noise level φ and the number of monitored
IP addresses k.

The Code Red v2 measurements show that the overall
probe rate of the worm was approximately ψ(t) = 660 ∗
10.84(t/60), where t is measured in minutes since the worm
began to propagate. If we define the time tcrit as the critical
point by which our system should detect the worm, then the
worm detector’s fidelity is the probability Probdetect(tcrit)
that the worm is detected by tcrit. For our analysis, we chose
tcrit = 242 minutes, the time by which 15,000 machines
would be infected.

To pick a reasonable range of background noise levels φ
and monitored IP addresses k to model, we used our data
from Figure 1(a) that showed an actual aggregate Internet
background noise rate of approximately 3 billion packets
generated each minute. Our analysis modeled a range of
background noise rates between φ = 0.5 billion and φ = 20
billion packets generated per minute to explore the effects
of rising Internet noise rates. To understand the impact of
different numbers of IP addresses monitored, we explored
the values k = {1, 28, 216, 218, 224, and 232}.

3.5.1 Detection Fidelity vs. False Positive Rate
When there is not a worm outbreak in progress, there is a

non-zero probability that a scan-packet based worm detector
will raise a false alarm due to random variations in the noise
process above the alarm threshold θ. Accordingly, we define
the false alarm probability as the likelihood that at least
one false alarm is raised during a time window equal to
tcrit. It should be noted that a worm detector false alarm is
not catastrophic since false alarms conservatively flag benign
traffic as malicious. As long as alarms are infrequent and
manual verification can quickly rule them out, the cost of a
false alarm would be limited.

By tuning the value of c, the number of standard devia-
tions that the alarm threshold is set above the mean noise
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Figure 2: (a) The probability an alarm is raised by time tcrit for varying numbers of monitored IP addresses k

between k = 1 and k = 232, where the number of standard deviations c used in calculating the detection threshold θ

is c = 3.25. (b) The probability an alarm is raised by time tcrit for values of k between k = 1 and k = 232, where the

number of standard deviations c is 3.5.

arrival rate, we can affect both the false positive rate and
the probability that a worm is detected. By increasing c, we
require larger observed deviations from the mean nose rate
to raise alarm, and therefore decrease the false alarm rate.
But, if we raise c too much, we will also lower the worm
detection rate. There is a fundamental tradeoff between de-
tection fidelity and the false positive rate.

Figure 3 illustrates this tradeoff. We modeled an aggre-
gate Internet noise rate of φ = 1.5 billion packets generated
per minute, and a detector that monitors k = 218 IP ad-
dresses. The graph demonstrates that increasing c decreases
both the false alarm and detection probabilities. However,
above c > 3 there is a region where the probability of detect-
ing a worm is much larger than the probability of detecting a
false alarm. This suggests that we should set c > 3 to avoid
many false alarms while still maintaining adequate detec-
tion fidelity. For the rest of our analysis, we will use values
c = 3.25 and c = 3.5.

3.5.2 Detection Fidelity vs. the Background Noise
Level of the Internet

As the background noise level grows, the ability for a
worm detector to raise an alarm degrades. A larger mean
noise arrival rate will drown out the worm for a longer pe-
riod of time, permitting the worm to affect more victims
before it is noticed. As well, noise arrival rate distribution
grows wider with a larger noise level, forcing the detector to
adjust its worm detection threshold even higher to prevent
false alarms.

We now quantify these effects. We use equation 5 to plot
the probability Probdetect(tcrit) that the detector raises an
alarm by time tcrit, for varying values of the number of
monitored IP addresses k, and for varying levels of Inter-
net noise. As previously mentioned, we explore a range of
values between φ = 0.5 billion and φ = 20 billion noise pack-
ets generated in aggregate on the Internet per minute; we
estimated the current Internet noise level at φ = 3 billion
per minute. Figure 2b shows our results for c = 3.25 and
c = 3.5.

These graphs demonstrate that as the noise level increases,

the probability that an alarm is raised rapidly decreases
down to the baseline false alarm probability of the detec-
tor (13% for c = 3.25 and 5.5% for c = 3.5). As the baseline
noise level and noise variations grow, the detector must be-
come more tolerant to larger fluctuations in the number of
observed scan packets, making it more difficult for the detec-
tor to spot a statistically significant increase in scan packet
rate. The worm signal simply gets “lost in the noise”.

3.5.3 Detection Fidelity vs. the Number of Monitored
IP Addresses

By increasing the number of monitored IP addresses k, the
detector is able to reduce the width of the observed noise
distribution. As a result, a smaller fluctuation will convince
the detector that it has observed a worm signal, allowing it
to spot the worm earlier. We once again consider the plots
of Figures 2a and 2b. Focusing on the separate curves plot-
ted for different values of k, increasing the number of mon-
itored IP addresses increases the probability that an alarm
is raised. However, even for moderately large values of k
such as k = 216 (a class B network), the probability of de-
tection remains low for realistic levels of background noise.
For small values of k such as k = 28 (a class C network), the
probability of detection is indistinguishable from the false
alarm rate. Adding more monitors to a detector does in-
crease detection fidelity, but for realistic noise levels, scan
packet-based detectors are only effective for large values of
k.

3.6 Summary
Scan packet-based detectors are highly sensitive to the

amount of background noise in the Internet. As the amount
of noise increases in the future, the effectiveness of scan
packet-based detectors will degrade. Adding more moni-
tored IP addresses increases the probability of detecting a
worm. However, scan packet-based detectors must monitor
a large number of IP addresses to be effective (i.e., k > 218).



4. AN ANALYSIS OF VICTIMS-BASED
WORM DETECTORS

In the previous section of the paper, we analyzed the ef-
fectiveness of scan packet-based worm detectors in the pres-
ence of background noise. In this section, we perform a
similar analysis for victims-based worm detectors. We first
provide an overview of how victims-based detectors work,
and we describe and validate an analytic model for Internet
background noise from the perspective of a victims-based
detector.

4.1 System Architecture
Victims-based worm detectors [24] have a similar architec-

ture as scan packet-based detectors. The detector passively
monitors a set of unused IP addresses to observe the arrival
of unsolicited packets. Instead of simply monitoring the rate
at which these packets arrive, a victims-based detector looks
at their source IP addresses to determine which hosts trans-
mitted them. A host that transmits an unsolicited packet is
called a victim. A detector sees a victims arrival rate con-
sisting of victims that are infected with a worm, and victims
that are background noise sources.

A victims-based worm detector keeps track of which vic-
tims it has observed in the past, and calculates the observed
rate of new victims. When the detector sees an increase that
is statistically unlikely to be due to variations in the back-
ground noise, it raises an alarm. Formally, a victims-based
worm detector with k monitors raises an alarm at time t
if the total new victim arrival rate observedvic(k, t) exceeds
the alarm threshold θ, where θ is greater than statistically
likely variations in background noise: observedvic(k, t) > θ.

4.2 Modeling Noise
Because victims-based detectors keep track of the arrival

rate of new victims, not the arrival rate of packets, we need
to adopt a more sophisticated model for Internet noise than
the one we employed for scan packet-based detectors. Our
noise model must model the dynamics of the population of
noise victims: how quickly new noise victims are born on
the Internet, how long they remain noisy, and the per-victim
scan rate.

We present a simple noise model that captures these dy-
namics. Our model assumes that new noise victims are born
at a constant rate of λ new victims per time unit, and that
a noise victim remains noisy for a fixed lifetime L before
being “repaired.” While a noise victim is noisy, it emits
noise packets at a rate of Srate packets per time unit, with
each packet being sent to a randomly selected IP address.
Given this, the aggregate rate at which noise packets are
generated, φ, is φ = L ∗ λ ∗ Srate.

With this model in place, we now need to derive the rate
at which new noise victims are observed by a victims-based
detector. To provide some intuition, in Figure 4 we show
measured data obtained from monitoring a single, unused IP
address over the course of 25 days. As with our scan packet-
based noise model, we assume that this data is largely rep-
resentative of values we would see at any IP address. Thus,
the figure demonstrates that the rate at which new victims
are observed fluctuates over time, and because of this fluctu-
ation, the detector will observe a distribution of new victim
arrival rates. In other words, the rate at which new victims
are observed is governed by some random variable N with
some distribution. In Figure 4, our measured distribution
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Figure 4: Measured Internet background noise victim

arrival rate. This graph shows the measured distribution

of the number of new noise victims that were observed

per hour by a single, unused IP address.

for a single monitored IP address had a mean of 7.9 new
victims observed per hour.

We now derive a closed-form expression for N . Though
we have produced a formal derivation, we omit its details
for brevity. To summarize it, our derivation shows that:

• The probability pL that a noise victim is detected dur-
ing its lifetime by a detector monitoring k IP addresses
is pL = 1− (1− Srate∗k

232 )L.

• The mean number of new noise victims that the de-
tector will observe per time unit (i.e., the mean new
noise victim arrival rate µnoise,k) is λ ∗ pL.

• The detector will observe a Poisson distribution of new
victim arrival rates, with mean µnoise,k. The vari-
ance of a Poisson distribution is equal to its mean,
so σnoise,k

2 = µnoise,k.

Putting this together, we have:

µnoise,k = (σnoise,k)2 = λ ∗
„

1 − (1− Srate ∗ k
232

)L

«
(6)

4.2.1 Parameterizing the Noise Model from Internet
Measurements

Our scan packet noise model had only one noise-related
parameter: φ, the aggregate rate at which new noise packets
were generated on the Internet. In contrast, our victims-
based noise model has three parameters: the global birth
rate of new noise victims λ, the lifetime of a victim L, and
the per-victim scan rate Srate. (As previously mentioned,
φ = L∗λ∗Srate.) We must first find a way to estimate these
three parameters before we can analyze the effectiveness of
victims-based detectors under realistic noise conditions.

We could not find a good source of data from which to
estimate L. However, we verified that the results in this
section of the paper are not very sensitive to different values
of L. Accordingly, we made a reasonable estimate of L =
24 hours: a machine will stay compromised and probe the
Internet for approximately a day before being noticed and
repaired.

Fortunately, given this L value, we can estimate λ and
Srate from our own measurements and from data published
in the study of Internet background radiation [16]. Based
on the data in Table 10 of that paper, a monitored Class



A network saw approximately 500,000 unique IP addresses
generating noise over a 24 hour period. Since a Class A net-
work contains 1/256th of all possible IP addresses, we expect
that most noise sources will probe at least one address within
this network during their lifetime, but to be conservative, we
doubled this value to 1,000,000 noise sources observed over
a 24 hour period. Given this, we estimate that there are
λ = 1, 000, 000/(24 ∗ 60) = 694 new noise victims born on
the Internet each minute.

Substituting λ = 694 per minute, φ = 3 billion per
minute, and L = 24 hours into the relation φ = L ∗ λ ∗
Srate, we estimate that Srate = 3000 scans per minute. We
will use these computed estimates when we incorporate our
noise model into the experiments in the quantitative analysis
portion of this section

4.2.2 The Detection Condition
We can now define the alarm threshold θ for a victims-

based detector. As before, we define θ to be some num-
ber of standard deviations c above the mean noise rate.
Thus, the victims-based detector will raise an alarm when
observedvic(k, t) > θ, where the alarm threshold θ = µnoise,k

+c ∗ σnoise,k.

4.3 Modeling a Worm
To model a worm, we use the same RCS model described

previously in Section 3.3. We want to understand W (t),
the rate at which the detector will observe new worm vic-
tims as a function of time. Unfortunately, analytically de-
riving W (t) is difficult, as the number of new victims ob-
served at time t depends on which victims were previously
observed. Instead, we simulated the growth of a Code Red
v2-like worm to numerically generate W (t) distributions at
several different time values.

4.4 Modeling the Worm Detector
Using our noise and worm models, the total rate at which

a detector with k monitors observes new victims at time t is
described by the sum of two random variables: the distribu-
tion of noise victims N , and the distribution of worm victims
over time W (t). This gives us observedvic(k, t) = N+W (t).
Because we numerically calculate W (t), we cannot derive a
closed-form expression for the distribution observedvic(k, t).
However, given values for noise parameters λ, L, and Srate,
we can instead numerically calculate it. We can now cal-
culate the probability that a victims-based worm detector
raises an alarm by time t after the worm is released. Similar
to the scan packet-based detector, this probability is:

Probdetect(t) = 1 −
i=tY
i=0

(1− Pr[observedvic(k, i) > θ]) (7)

In the rest of this section, we use our real-world estimates
of noise parameters L and Srate, and apply equation 7 to
explore how different values of k, λ, and c affect the prob-
ability that a victims-based detector will successfully raise
an alarm.

4.5 Quantitative Results
Given our new noise and worm models, we can now return

to our three questions about victims-based worm detectors.
To answer these questions, we again use measurements of the
Code Red v2 worm [15] to parameterize our worm model.
Then, we use our detector model to explore the effect of
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Figure 5: False alarm vs. worm detection probabil-

ities. This figure illustrates the trade-off between the

probability of raising a false alarm and the probability of

detecting the worm by its critical time, for alarm condi-

tions at various different numbers of standard deviations

c above the average noise level. The system considered

monitored k = 216 IP addresses, and the global new vic-

tim birth rate λ was fixed at λ = 3500 new victims per

minute.

varying the global new victim arrival rate λ and the number
of monitored IP addresses k. We continue to model the
overall probe rate of Code Red v2 victims at time t as ψ(t) =

660 ∗ 10.84(t/60), where t is measured in minutes. Again,
we define the critical point by which the worm should be
detected as tcrit = 242 minutes.

In the experiments to follow, we included our noise model
by using the previously computed estimates of our noise
model’s parameters. Specifically, we chose to hold fixed the
values of L = 24 hours and Srate = 3000 scans per minute
while varying the new victim arrival rate λ between 100
and 10,000 victims per minute to understand the impact of
different noise levels on a victims-based detector.

4.5.1 Detection Fidelity vs. False Positive Rate
Much like with the scan packet-based detector, variations

in the new victim arrival rate observed by the detector mean
that a victims-based detector has a non-zero probability
of raising a false alarm when a worm outbreak is not in
progress. By tuning the value of c, we can once again trade
off between the speed at which the worm will be detected
and the false alarm probability.

Figure 5 illustrates this tradeoff. We modeled a global
new victim birth rate of λ = 3500 victims per minute,
and a detector that monitors k = 216 IP addresses. The
graph demonstrates that increasing c decreases both the
false alarm and detection probabilities. As before, values
of c = 3.25 and c = 3.5 appear to give us a reasonable
balance.

4.5.2 Detection Fidelity vs. the Background Noise
Level of the Internet

The additional layer of complexity in our victims-based
noise model required us to consider a different metric λ,
the global birth rate of new victims, for assessing the back-
ground noise level in the Internet. However, given that we
are holding the victim lifetime L and per-victim scan rate
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Figure 6: (a) The probability an alarm is raised by time tcrit for varying numbers of monitored IP addresses k

between k = 28 and k = 232, where the number of standard deviations c used in calculating the detection threshold θ

is c = 3.25. (b) The same graph, except the number of standard deviations c is set at 3.5. The fluctuations in these

graphs are due to our numerical calculations of some of the distributions, as described in Sections 4.3 and 4.4.

Srate constant, the aggregate background scan rate φ is di-
rectly proportional to λ. Under these assumptions, an in-
crease in global noise is a direct consequence of an increase
in the rate at which noise victims are born.

In this section, we vary the metric λ to quantify how an
increased Internet noise level affects victims-based worm de-
tectors. To do this, we use equation 7 to plot the probability
Probdetect(tcrit) that the detector raises an alarm by time
tcrit, for varying values of the number of monitored IP ad-
dresses k, and for varying global new noise victim arrival
rates λ. As previously mentioned, we explore a range of val-
ues between λ = 100 and λ = 10, 000 new noise victims born
per minute. Figure 6a and 6b show our results for c = 3.25
and c = 3.5 standard deviations in our detection threshold
θ.

As the arrival rate of new noise victims on the Internet
increases, the probability that an alarm is raised rapidly de-
creases down to the baseline false alarm probability of the
detector (14% for c = 3.25 and 6% for c = 3.5). As the
baseline noise level λ and noise variations grow, the detec-
tor must become more tolerant to larger fluctuations in the
number of observed victims, making it more difficult for the
detector to spot a statistically significant increase in the ar-
rival rate of victims. As with scan packet-based detectors,
increasing noise levels cause a victims-based worm detector
to lose the worm signal in the noise.

Note that we did not plot any data for k = 1 in these
graphs. For only a single monitored IP address, the expected
rate at which new victims were observed was so small (a few
victims per hour) that the detection threshold no longer is
meaningful: the arrival of any new victim would cause an
alarm to be raised.

4.5.3 Detection Fidelity vs. the Number of Monitored
IP Addresses

To understand how the addition of more monitors impacts
the detection fidelity, we once again consider Figures 6a and
6b. As with the scan packet-based detector, increasing the
number of monitored IP addresses increases the probability
that an alarm is raised by tcrit. However, comparing Fig-

ure 6 to the equivalent Figure 2 for the scan packet-based
detector, we see that a victims-based detector is more effec-
tive for the same number of monitored IP addresses. Both
require a large number of monitored IP addresses, but with
216 IP addresses, a victims-based detector performs better
than a scan packet-based detector that monitors 218 IP ad-
dresses. Adding more monitors does increase detection fi-
delity. However, for growing, realistic noise levels, victims-
based and scan packet-based detectors are only effective for
large values of k.

4.6 Summary
Victims-based detectors are also highly sensitive to the

amount of background noise in the Internet. As the amount
of noise increases in the future, the effectiveness of victims-
based detectors will also degrade substantially. Likewise,
adding more monitored IP addresses increases the probabil-
ity of detecting a worm. Though victims-based detectors can
make better use of any given number of IP addresses, both
the victims-based and scan packet-based detectors require
large numbers of IP addresses in order to be effective.

5. CONCLUSIONS
Global scanning worm detectors monitor traffic arriving

at unused IP addresses in an attempt to observe the scan
traffic associated with a rapidly growing worm. However, a
constant deluge of Internet “background noise” also arrives
at these detectors. To spot a worm, the detectors must
look for statistically significant increases in probe traffic that
distinguish the worm signal from random variations in the
noise.

In this paper, we examined how Internet background noise
affects the ability of global scanning worm detectors to de-
tect worms. To accomplish this, we proposed measurement-
inspired statistical models of background noise, and com-
bined them with the random constant spread (RCS) model
of worm propagation to calculate the probability that a
worm detector would be able to raise an alarm. We an-
alyzed two global scanning worm detection schemes: scan



packet-based and victims-based detectors. We found that
scan packet-based detectors are only effective if they mon-
itor a very large number of IP addresses, and that as the
noise level of the Internet grows, they quickly lose their abil-
ity to detect worms early. While victims-based detectors are
somewhat less sensitive to the noise level, they too require
a large number of unused IP addresses, and their detection
fidelity, too, degrades as noise grows.

The global scanning worm detectors considered in our
analysis would likely fall prey to more advanced and clever
worms. Evasive techniques such as the use of hit-lists, source
IP address spoofing, or slow scanning can easily fool such de-
tectors and allow a worm to spread undetected. For these
reasons, and for the limitations identified in our analysis,
we conclude that global scanning worm detectors are not a
viable long-term strategy for detecting worms early. Local
detection schemes and signature-based detectors are much
better equipped to deal with the increasing background In-
ternet noise level and the rapidly escalating ability of worms
to spread quickly and cleverly.
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